ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Phys Rev Lett. 2013 May 24;110(21):217006. doi: 10.1103/PhysRevLett.110.217006.
The nodal band dispersion in (Bi,Pb)(2)(Sr,La)(2)CuO(6+δ) (Bi2201) is investigated over a wide range of doping by using 7-eV laser-based angle-resolved photoemission spectroscopy. We find that the low-energy band renormalization ("kink"), recently discovered in Bi(2)Sr(2)CaCu(2)O(8+δ) (Bi2212), also occurs in Bi2201, but at a binding energy around half that in Bi2212. Surprisingly, the coupling energy dramatically increases with a decrease of carrier concentration, showing a sharp enhancement across the optimal doping. These properties (material and doping dependence of the coupling energy) demonstrate the significant correlation among the mode coupling, the energy gap close to the node, and the strong electron correlation. Our results suggest forward scattering arising from the interplay between the electrons and in-plane polarized acoustic phonon branch as the origin of the low-energy renormalization.
利用基于 7 电子伏特激光的角分辨光发射谱,研究了(Bi,Pb)(2)(Sr,La)(2)CuO(6+δ)(Bi2201)在宽掺杂范围内的节点能带弥散。我们发现,最近在 Bi(2)Sr(2)CaCu(2)O(8+δ)(Bi2212)中发现的低能能带重整化(“拐点”)也出现在 Bi2201 中,但结合能约为 Bi2212 的一半。令人惊讶的是,耦合能量随载流子浓度的降低而急剧增加,在最佳掺杂处显示出明显的增强。这些性质(耦合能的材料和掺杂依赖性)表明模式耦合、接近节点的能隙和强电子相关之间存在显著的相关性。我们的结果表明,来自电子与平面极化声子分支相互作用的前向散射是低能重整化的起源。