Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K.
Evol Comput. 2014 Summer;22(2):189-230. doi: 10.1162/EVCO_a_00106. Epub 2013 Oct 30.
The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in space where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based evolutionary algorithm (ETEA) to solve multi-objective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically, in ETEA, four strategies are introduced: (1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; (2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; (3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; (4) Three diversity indicators-the minimum edge, degree, and ETCD-with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.
欧几里得最小生成树(EMST)广泛应用于各种领域,它是空间中一组点的最小生成树,其中每对点之间的边权重是它们的欧几里得距离。由于 EMST 的生成完全由解(点)之间的欧几里得距离决定,因此 EMST 的性质与解的分布和位置信息密切相关。本文探讨了 EMST 的性质,并提出了一种基于 EMST 的进化算法(ETEA)来解决多目标优化问题(MOPs)。与大多数专注于 Pareto 支配关系的 EMO 算法不同,所提出的算法主要考虑基于距离的度量来评估和比较进化搜索过程中的个体。具体来说,在 ETEA 中,引入了四种策略:(1)提出了基于 EMST 的拥挤距离(ETCD)来估计种群中个体的密度;(2)采用包含 ETCD 的距离比较方法为个体分配适应值;(3)设计了一种适应值调整技术,以避免环境选择中的部分过度拥挤;(4)应用关于 EMST 的三个多样性指标——最小边、度和 ETCD——来确定档案截断中个体的生存。通过对具有不同特征的 32 个测试实例进行的一系列广泛实验,发现 ETEA 在提供收敛性、均匀性和分散性之间的良好平衡方面,与五种最先进的算法及其前身具有竞争力。