Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
Biophys J. 2013 Jun 4;104(11):2485-92. doi: 10.1016/j.bpj.2013.03.053.
Intramolecular collision dynamics play an essential role in biomolecular folding and function and, increasingly, in the performance of biomimetic technologies. To date, however, the quantitative studies of dynamics of single-stranded nucleic acids have been limited. Thus motivated, here we investigate the sequence composition, chain-length, viscosity, and temperature dependencies of the end-to-end collision dynamics of single-stranded DNAs. We find that both the absolute collision rate and the temperature dependencies of these dynamics are base-composition dependent, suggesting that base stacking interactions are a significant contributor. For example, whereas the end-to-end collision dynamics of poly-thymine exhibit simple, linear Arrhenius behavior, the behavior of longer poly-adenine constructs is more complicated. Specifically, 20- and 25-adenine constructs exhibit biphasic temperature dependencies, with their temperature dependences becoming effectively indistinguishable from that of poly-thymine above 335 K for 20-adenines and 328 K for 25-adenines. The differing Arrhenius behaviors of poly-thymine and poly-adenine and the chain-length dependence of the temperature at which poly-adenine crosses over to behave like poly-thymine can be explained by a barrier friction mechanism in which, at low temperatures, the energy barrier for the local rearrangement of poly-adenine becomes the dominant contributor to its end-to-end collision dynamics.
分子内碰撞动力学在生物分子折叠和功能中起着至关重要的作用,并且在仿生技术的性能中也越来越重要。然而,迄今为止,对单链核酸动力学的定量研究还很有限。因此,在这里我们研究了单链 DNA 的末端碰撞动力学的序列组成、链长、粘度和温度依赖性。我们发现,这些动力学的绝对碰撞率和温度依赖性都与碱基组成有关,这表明碱基堆积相互作用是一个重要的贡献者。例如,尽管多胸腺嘧啶的末端碰撞动力学表现出简单的线性 Arrhenius 行为,但较长的多腺嘌呤结构的行为更为复杂。具体而言,20-和 25-腺嘌呤结构表现出双相温度依赖性,在 335 K 以上,20-腺嘌呤的温度依赖性与多胸腺嘧啶几乎无法区分,而在 328 K 以上,25-腺嘌呤的温度依赖性与多胸腺嘧啶几乎无法区分。多胸腺嘧啶和多腺嘌呤的 Arrhenius 行为的不同以及多腺嘌呤达到类似于多胸腺嘧啶行为的温度的链长依赖性可以通过一个障碍摩擦机制来解释,在该机制中,在低温下,多腺嘌呤局部重排的能量障碍成为其末端碰撞动力学的主要贡献者。