Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
J Chem Phys. 2013 Feb 21;138(7):074112. doi: 10.1063/1.4792206.
Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.
最近的实验表明,展开蛋白质的重排动力学通常可以用简单的聚合物模型来充分描述。特别是,带有内部摩擦的 Rouse 模型(RIF)可以捕获在许多蛋白质的单分子荧光相关光谱(FCS)研究中观察到的内部摩擦效应。在这里,我们使用 RIF 及其非自由排水类似物,带有内部摩擦的 Zimm 模型,来探讨内部摩擦对形成展开链内分子内接触的速率的影响。与从 FCS 实验推断的重排时间不同,后者与溶剂粘度呈线性关系,我们发现分子内接触的首次通过时间显示出更复杂的粘度依赖性。我们进一步描述了在高和低内部摩擦极限下接触形成时间遵守的标度关系。我们的研究结果提供了可通过实验检验的预测,可作为分析未来蛋白质中接触形成研究的框架。