Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Phys Chem Chem Phys. 2013 Jul 21;15(27):11441-53. doi: 10.1039/c3cp51595h. Epub 2013 Jun 7.
Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.
大气气溶胶由有机化合物和无机盐组成,在空气质量和气候中起着关键作用。越来越多的证据表明,这些粒子经常表现出相分离,主要分为有机相和富含电解质的水相。此外,还存在无定形半固态或玻璃态颗粒相。本文使用经典的硫酸铵体系与臭氧氧化α-蒎烯生成的有机物混合,从理论上说明了物理状态、非理想性和颗粒形态对气溶胶质量浓度和气体-颗粒质量转移特征时间尺度的相互作用。相分离会显著影响整体颗粒质量和化学组成。半固态或玻璃态相可能会在动力学上抑制半挥发性成分的分配和吸湿性生长,这与有机化合物存在准瞬间气-粒平衡的传统假设形成对比。这些影响对实验室数据的解释以及改进大气空气质量和气候模型的发展具有重要意义。