Rudy Charles W, Marandi Alireza, Vodopyanov Konstantin L, Byer Robert L
Edward L. Ginzton Laboratory, Stanford University, USA.
J Vis Exp. 2013 May 27(75):e50518. doi: 10.3791/50518.
Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs(1, 2) for applications such as molecular fingerprinting, (3) trace gas detection, (4) laser-driven particle acceleration, (5) and x-ray production via high harmonic generation. (6) Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, (7) which depend strongly on the geometry of the taper. (8) Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. (9) This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG(10) or tuning of the passband of MOFs, (11) optimizing tapered fiber pairs for fused fiber couplers(12) and wavelength division multiplexers (WDMs), (13) or modifying dispersion compensation for compression or stretching of optical pulses.(14-16.)
在锥形硫族化物光纤中产生超连续谱(SCG)对于拓宽中红外(或中红外,大致为2 - 20μm波长范围)频率梳是很有必要的,这些频率梳可用于诸如分子指纹识别、痕量气体检测、激光驱动粒子加速以及通过高次谐波产生X射线等应用。在锥形光纤中实现高效的SCG需要精确控制光纤起始端的群速度色散(GVD)和光脉冲的时间特性,而这强烈依赖于锥形的几何形状。由于连续SCG实验的锥形设置和过程存在变化,如光纤长度、锥形环境温度或耦合到光纤中的功率,因此对SCG进行原位光谱监测对于优化单个实验的输出光谱是必要的。用于SCG的原位光纤锥形制作包括将泵浦源通过待锥形化的光纤耦合到光谱测量装置。然后在实时观察光谱测量信号的同时对光纤进行锥形制作。当信号达到峰值时,停止锥形制作。这种原位锥形制作方法能够从市售近红外频率梳的次谐波产生稳定的、跨越倍频程的中红外频率梳。由于制作腰长仅为2mm的最佳锥形所需的时间和材料减少,该方法降低了成本。原位锥形制作技术可扩展到优化用于SCG的微结构光纤(MOF)或调整MOF的通带,优化用于熔接光纤耦合器和波分复用器(WDM)的锥形光纤对,或修改用于光脉冲压缩或拉伸的色散补偿。