Suppr超能文献

比较大鼠视觉、躯体感觉和额叶皮层中突触蛋白的发育。

Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex.

机构信息

McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada.

出版信息

Front Neural Circuits. 2013 May 28;7:97. doi: 10.3389/fncir.2013.00097. eCollection 2013.

Abstract

Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the cortical areas.

摘要

两种理论影响了我们对皮质发育的理解

整合网络理论,其中突触发育在各个区域之间协调;级联理论,其中皮质以波浪状的方式从感觉区域向非感觉区域发育。这些关于皮质发育的不同观点为当前旨在比较皮质区域间连接组详细成熟度的研究带来了挑战。我们采用了一种不同的方法来比较大鼠视觉、体感和前额皮质中的突触发育,方法是测量调节囊泡循环的突触前(突触素和突触小体蛋白)和后(PSD-95 和 Gephyrin)蛋白的表达,这些蛋白锚定兴奋性或抑制性(E-I)受体。我们还比较了前后突触蛋白对的平衡以及总体前到后突触平衡的发育,以解决功能成熟和 E-I 平衡的出现。我们发现,三种皮质区域之间的单个蛋白和后突触指数的发育重叠,但前额皮质中的前突触指数成熟较晚。最后,我们应用了一种神经信息学方法,使用主成分分析,发现三个成分可以捕捉突触蛋白的发育。第一个成分占蛋白表达变化的 64%,反映了三个皮质区域之间的总蛋白表达。第二个成分是 Gephyrin 和 E-I 平衡,它以从体感皮层开始的顺序波出现,然后是前额皮层,最后是视觉皮层。第三个成分是前突触和后突触蛋白之间的平衡,它在体感皮层中遵循不同的发育轨迹。总的来说,这些结果最支持突触发育的整合网络,但也突出了在时间和终点方面在皮质区域之间存在更多复杂的发育模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8794/3664769/bc5e82762603/fncir-07-00097-g001.jpg

相似文献

1
Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex.
Front Neural Circuits. 2013 May 28;7:97. doi: 10.3389/fncir.2013.00097. eCollection 2013.
2
Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex.
Front Neural Circuits. 2015 Feb 12;9:3. doi: 10.3389/fncir.2015.00003. eCollection 2015.
3
Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood.
Neuroscience. 2007 Nov 9;149(3):582-91. doi: 10.1016/j.neuroscience.2007.06.036. Epub 2007 Jul 17.
4
Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.
J Neurosci. 2017 Jun 21;37(25):6031-6042. doi: 10.1523/JNEUROSCI.2304-16.2017. Epub 2017 May 29.
5
Effects of neurotrophins on synaptic protein expression in the visual cortex of dark-reared rats.
J Neurosci. 2003 May 1;23(9):3566-71. doi: 10.1523/JNEUROSCI.23-09-03566.2003.
6
Sensorimotor Perturbation Induces Late and Transient Molecular Synaptic Proteins Activation and Expression Changes.
J Mol Neurosci. 2021 Dec;71(12):2534-2545. doi: 10.1007/s12031-021-01839-1. Epub 2021 Apr 9.
10
Differential synaptic vesicle protein expression in the barrel field of developing cortex.
J Comp Neurol. 1996 Nov 11;375(2):321-32. doi: 10.1002/(SICI)1096-9861(19961111)375:2<321::AID-CNE10>3.0.CO;2-Y.

引用本文的文献

1
Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress.
Front Neural Circuits. 2025 Mar 26;19:1568610. doi: 10.3389/fncir.2025.1568610. eCollection 2025.
2
Synapses and dendritic spines are eliminated in the primary visual cortex of mice subjected to chronic intraocular pressure elevation.
Neural Regen Res. 2026 Mar 1;21(3):1236-1248. doi: 10.4103/NRR.NRR-D-24-00394. Epub 2024 Nov 13.
4
Reorganization of adolescent prefrontal cortex circuitry is required for mouse cognitive maturation.
Neuron. 2024 Feb 7;112(3):421-440.e7. doi: 10.1016/j.neuron.2023.10.024. Epub 2023 Nov 17.
6
Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature.
Drug Des Devel Ther. 2022 Aug 31;16:2919-2931. doi: 10.2147/DDDT.S367229. eCollection 2022.
7
Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons.
J Neurosci. 2022 Jan 12;42(2):166-182. doi: 10.1523/JNEUROSCI.2926-20.2021. Epub 2021 Nov 22.
9
Complement and microglia dependent synapse elimination in brain development.
WIREs Mech Dis. 2022 May;14(3):e1545. doi: 10.1002/wsbm.1545. Epub 2021 Nov 4.
10
GABA-receptive microglia selectively sculpt developing inhibitory circuits.
Cell. 2021 Jul 22;184(15):4048-4063.e32. doi: 10.1016/j.cell.2021.06.018. Epub 2021 Jul 6.

本文引用的文献

1
Cortical development of AMPA receptor trafficking proteins.
Front Mol Neurosci. 2012 May 16;5:65. doi: 10.3389/fnmol.2012.00065. eCollection 2012.
3
Synaptophysin is required for synaptobrevin retrieval during synaptic vesicle endocytosis.
J Neurosci. 2011 Sep 28;31(39):14032-6. doi: 10.1523/JNEUROSCI.3162-11.2011.
4
Synapsin regulation of vesicle organization and functional pools.
Semin Cell Dev Biol. 2011 Jun;22(4):387-92. doi: 10.1016/j.semcdb.2011.07.003. Epub 2011 Jul 31.
6
Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons.
Neuron. 2011 Jun 9;70(5):847-54. doi: 10.1016/j.neuron.2011.04.001.
8
Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex.
Front Synaptic Neurosci. 2010 Sep 28;2:138. doi: 10.3389/fnsyn.2010.00138. eCollection 2010.
9
Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers.
Neuron. 2010 Nov 18;68(4):639-53. doi: 10.1016/j.neuron.2010.09.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验