Al Awabdh Sana, Donneger Florian, Goutierre Marie, Séveno Martial, Vigy Oana, Weinzettl Pauline, Russeau Marion, Moutkine Imane, Lévi Sabine, Marin Philippe, Poncer Jean Christophe
INSERM UMR-S 1270, 75005 Paris, France.
Sorbonne Université, 75005 Paris, France.
J Neurosci. 2022 Jan 12;42(2):166-182. doi: 10.1523/JNEUROSCI.2926-20.2021. Epub 2021 Nov 22.
The K-Cl cotransporter KCC2, encoded by the gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons. Fast synaptic inhibition in the brain is mediated by chloride-permeable GABA receptors (GABARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
由该基因编码的钾氯协同转运蛋白KCC2是一种神经元特异性氯化物排出器,可调节GABA受体介导的传递强度和极性。除了其典型的离子转运功能外,KCC2还通过与多种分子伴侣相互作用来调节树突棘形成和兴奋性突触功能。KCC2在谷氨酸能和GABA能突触附近富集,而这些突触的活动又反过来调节其膜稳定性和功能。已知KCC2通过4.1N与膜下肌动蛋白细胞骨架相互作用,以控制其在树突棘上谷氨酸能突触附近的锚定。然而,KCC2在GABA能突触附近聚集的分子决定因素仍然未知。在这里,我们使用蛋白质组学来鉴定成年大鼠新皮层中与KCC2相互作用的新蛋白。我们鉴定出了已知和新的KCC2候选伴侣,包括一些参与神经元发育和突触传递的蛋白。其中包括gephyrin,它是GABA能突触的主要支架分子。通过从大鼠新皮层提取物中进行免疫沉淀,证实了gephyrin与内源性KCC2的相互作用。我们表明,gephyrin可稳定质膜上的KCC2,并促进其在海马神经元中的聚集,主要但并非仅在GABA能突触附近,从而控制KCC2介导的氯化物排出。这项研究确定gephyrin是一种新的KCC2锚定分子,可调节其在皮层神经元中的膜表达和功能。大脑中的快速突触抑制由氯化物通透的GABA受体(GABARs)介导,因此依赖于跨膜氯化物梯度。在神经元中,这些梯度主要由钾氯协同转运蛋白KCC2维持。因此,了解控制KCC2表达和功能的机制对于理解其生理调节以及在病理状态下挽救其功能至关重要。KCC2的功能取决于其膜表达和聚集,但其潜在机制仍然未知。我们描述了KCC2与gephyrin之间的相互作用,gephyrin是抑制性突触的主要支架蛋白。我们表明,gephyrin控制质膜上KCC2的聚集,而gephyrin的缺失会损害KCC2的功能。我们的数据表明,由GABARs、gephyrin和KCC2组成的功能单元可调节突触GABA信号传导。