IEEE Trans Cybern. 2013 Dec;43(6):1845-59. doi: 10.1109/TSMCB.2012.2231860.
Combining ant colony optimization (ACO) and the multiobjective evolutionary algorithm (EA) based on decomposition (MOEA/D), this paper proposes a multiobjective EA, i.e., MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multiobjective optimization problem into a number of single-objective optimization problems. Each ant (i.e., agent) is responsible for solving one subproblem. All the ants are divided into a few groups, and each ant has several neighboring ants. An ant group maintains a pheromone matrix, and an individual ant has a heuristic information matrix. During the search, each ant also records the best solution found so far for its subproblem. To construct a new solution, an ant combines information from its group's pheromone matrix, its own heuristic information matrix, and its current solution. An ant checks the new solutions constructed by itself and its neighbors, and updates its current solution if it has found a better one in terms of its own objective. Extensive experiments have been conducted in this paper to study and compare MOEA/D-ACO with other algorithms on two sets of test problems. On the multiobjective 0-1 knapsack problem,MOEA/D-ACO outperforms the MOEA/D with conventional genetic operators and local search on all the nine test instances. We also demonstrate that the heuristic information matrices in MOEA/D-ACO are crucial to the good performance of MOEA/D-ACO for the knapsack problem. On the biobjective traveling salesman problem, MOEA/D-ACO performs much better than the BicriterionAnt on all the 12 test instances. We also evaluate the effects of grouping, neighborhood, and the location information of current solutions on the performance of MOEA/D-ACO. The work in this paper shows that reactive search optimization scheme, i.e., the "learning while optimizing" principle, is effective in improving multiobjective optimization algorithms.
本文将蚁群优化(ACO)与基于分解的多目标进化算法(MOEA/D)相结合,提出了一种多目标进化算法,即 MOEA/D-ACO。与其他类似 MOEA/D 的算法一样,MOEA/D-ACO 将多目标优化问题分解为多个单目标优化问题。每个蚂蚁(即代理)负责解决一个子问题。所有的蚂蚁被分为几个组,每个蚂蚁都有几个相邻的蚂蚁。一个蚂蚁组维护一个信息素矩阵,每个个体蚂蚁有一个启发式信息矩阵。在搜索过程中,每个蚂蚁还记录其子问题迄今为止找到的最佳解决方案。为了构建一个新的解决方案,蚂蚁组合其所在蚂蚁组的信息素矩阵、其自身的启发式信息矩阵以及其当前的解决方案中的信息。蚂蚁检查自身及其邻居构建的新解决方案,并在根据自身目标找到更好的解决方案时更新其当前解决方案。本文进行了广泛的实验,以研究和比较 MOEA/D-ACO 在两组测试问题上与其他算法的性能。在多目标 0-1 背包问题上,MOEA/D-ACO 在所有九个测试实例上都优于使用传统遗传算子和局部搜索的 MOEA/D。我们还证明了 MOEA/D-ACO 中的启发式信息矩阵对于解决背包问题的 MOEA/D-ACO 的良好性能至关重要。在双目标旅行商问题上,MOEA/D-ACO 在所有 12 个测试实例上都明显优于 BicriterionAnt。我们还评估了分组、邻居和当前解决方案位置信息对 MOEA/D-ACO 性能的影响。本文的工作表明,反应式搜索优化方案,即“边优化边学习”原则,对于提高多目标优化算法是有效的。