Suppr超能文献

一种基于分解的多目标飞狐优化算法及其应用

A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications.

作者信息

Zhang Chen, Song Ziyun, Yang Yufei, Zhang Changsheng, Guo Ying

机构信息

Software College, Northeastern University, Shenyang 110169, China.

College of Computer Science and Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China.

出版信息

Biomimetics (Basel). 2024 Jul 7;9(7):417. doi: 10.3390/biomimetics9070417.

Abstract

The flying foxes optimization (FFO) algorithm stimulated by the strategy used by flying foxes for subsistence in heat wave environments has shown good performance in the single-objective domain. Aiming to explore the effectiveness and benefits of the subsistence strategy used by flying foxes in solving optimization challenges involving multiple objectives, this research proposes a decomposition-based multi-objective flying foxes optimization algorithm (MOEA/D-FFO). It exhibits a great population management strategy, which mainly includes the following features. (1) In order to improve the exploration effectiveness of the flying fox population, a new offspring generation mechanism is introduced to improve the efficiency of exploration of peripheral space by flying fox populations. (2) A new population updating approach is proposed to adjust the neighbor matrices to the corresponding flying fox individuals using the new offspring, with the aim of enhancing the rate of convergence in the population. Through comparison experiments with classical algorithms (MOEA/D, NSGA-II, IBEA) and cutting-edge algorithms (MOEA/D-DYTS, MOEA/D-UR), MOEA/D-FFO achieves more than 11 best results. In addition, the experimental results under different population sizes show that the proposed algorithm is highly adaptable and has good application prospects in optimization problems for engineering applications.

摘要

受狐蝠在热浪环境中生存策略启发的狐蝠优化(FFO)算法在单目标领域表现出良好性能。为了探索狐蝠生存策略在解决多目标优化挑战方面的有效性和优势,本研究提出了一种基于分解的多目标狐蝠优化算法(MOEA/D - FFO)。它展现出一种出色的种群管理策略,主要包括以下特点。(1)为提高狐蝠种群的探索有效性,引入了一种新的子代生成机制,以提高狐蝠种群对外围空间的探索效率。(2)提出了一种新的种群更新方法,利用新生成的子代将邻域矩阵调整到相应的狐蝠个体,旨在提高种群的收敛速度。通过与经典算法(MOEA/D、NSGA - II、IBEA)和前沿算法(MOEA/D - DYTS、MOEA/D - UR)的对比实验,MOEA/D - FFO取得了超过11个最佳结果。此外,不同种群规模下的实验结果表明,所提算法具有高度适应性,在工程应用优化问题中具有良好的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377b/11274698/8b5d37e883c1/biomimetics-09-00417-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验