Suppr超能文献

如何在遗传关联研究中选择标签 SNP?具有参数优化的 CLONTagger 方法。

How to select tag SNPs in genetic association studies? The CLONTagger method with parameter optimization.

机构信息

Akören Vocational School, Department of Computer Engineering, Faculty of Engineering and Architecture, Selçuk University, Konya, Turkey.

出版信息

OMICS. 2013 Jul;17(7):368-83. doi: 10.1089/omi.2012.0100. Epub 2013 Jun 11.

Abstract

Selection of genetic variants is a crucial first step in the rational design of studies aimed at explaining individual differences in susceptibility to complex human diseases or health intervention outcomes; for example, in the emerging fields of pharmacogenomics, nutrigenomics, and vaccinomics. While single nucleotide polymorphisms (SNPs) are frequently employed in these studies, the cost of genotyping a huge number of SNPs remains a limiting factor, particularly in low and middle income countries. Therefore, it is important to detect a subset of SNPs to represent the rest of SNPs with maximum possible accuracy. The present study introduces a new method, CLONTagger with parameter optimization, which uses Support Vector Machine (SVM) to predict the rest of SNPs and Clonal Selection Algorithm (CLONALG) to select tag SNPs. Furthermore, the Particle Swarm Optimization algorithm is preferred for the optimization of C and γ parameters of the Support Vector Machine. Additionally, using many datasets, we compared the proposed new method with the tag SNP selection algorithms present in literature. Our results suggest that the CLONTagger with parameter optimization can identify tag SNPs with better prediction accuracy than other methods. Application-oriented studies are warranted to evaluate the utility of this method in future research in human genetics and study of the genetic components of variable responses to drugs, nutrition, and vaccines.

摘要

选择遗传变异是旨在解释复杂人类疾病或健康干预结果易感性个体差异的研究的合理设计的关键第一步;例如,在新兴的药物基因组学、营养基因组学和疫苗基因组学领域。虽然单核苷酸多态性(SNP)经常用于这些研究中,但对大量 SNP 进行基因分型的成本仍然是一个限制因素,特别是在低收入和中等收入国家。因此,重要的是要检测一组 SNP,以最大可能的准确性代表其余的 SNP。本研究介绍了一种新方法,即带有参数优化的 CLONTagger,它使用支持向量机(SVM)来预测其余的 SNP,使用克隆选择算法(CLONALG)来选择标记 SNP。此外,还使用粒子群优化算法来优化支持向量机的 C 和γ参数。此外,我们使用了许多数据集,将提出的新方法与文献中现有的标记 SNP 选择算法进行了比较。我们的结果表明,带有参数优化的 CLONTagger 可以比其他方法更准确地识别标记 SNP。需要进行面向应用的研究,以评估该方法在未来人类遗传学研究和对药物、营养和疫苗的可变反应的遗传成分研究中的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验