Sykulski Maciej, Gambin Tomasz, Bartnik Magdalena, Derwińska Katarzyna, Wiśniowiecka-Kowalnik Barbara, Stankiewicz Paweł, Gambin Anna
Institute of Informatics, University of Warsaw, Warsaw, Poland.
J Clin Bioinforma. 2013 Jun 11;3(1):12. doi: 10.1186/2043-9113-3-12.
DNA copy number variations (CNV) constitute an important source of genetic variability. The standard method used for CNV detection is array comparative genomic hybridization (aCGH).
We propose a novel multiple sample aCGH analysis methodology aiming in rare CNVs detection. In contrast to the majority of previous approaches, which deal with cancer datasets, we focus on constitutional genomic abnormalities identified in a diverse spectrum of diseases in human. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post-processing filtering to any given segmentation method.
Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. The robust statistical framework applied in our method enables to eliminate the influence of widespread technical artifact termed 'waves'.
DNA拷贝数变异(CNV)是遗传变异的重要来源。用于CNV检测的标准方法是阵列比较基因组杂交(aCGH)。
我们提出了一种旨在检测罕见CNV的新型多样本aCGH分析方法。与大多数先前处理癌症数据集的方法不同,我们专注于在人类多种疾病中鉴定出的结构基因组异常。我们的方法在366例患有发育迟缓/智力残疾、癫痫或自闭症的患者的外显子靶向aCGH阵列上进行了测试。所提出的算法可以作为对任何给定分割方法的后处理过滤。
由于从多个样本中获得的额外信息,我们能够有效地检测出与导致致病变化的罕见CNV相对应的显著片段。我们方法中应用的稳健统计框架能够消除被称为“波”的广泛技术假象的影响。