文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

突破浪潮:基于微阵列比较基因组杂交技术提高拷贝数变异检测

Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization.

作者信息

Marioni John C, Thorne Natalie P, Valsesia Armand, Fitzgerald Tomas, Redon Richard, Fiegler Heike, Andrews T Daniel, Stranger Barbara E, Lynch Andrew G, Dermitzakis Emmanouil T, Carter Nigel P, Tavaré Simon, Hurles Matthew E

机构信息

Computational Biology Group, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK.

出版信息

Genome Biol. 2007;8(10):R228. doi: 10.1186/gb-2007-8-10-r228.


DOI:10.1186/gb-2007-8-10-r228
PMID:17961237
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2246302/
Abstract

BACKGROUND: Large-scale high throughput studies using microarray technology have established that copy number variation (CNV) throughout the genome is more frequent than previously thought. Such variation is known to play an important role in the presence and development of phenotypes such as HIV-1 infection and Alzheimer's disease. However, methods for analyzing the complex data produced and identifying regions of CNV are still being refined. RESULTS: We describe the presence of a genome-wide technical artifact, spatial autocorrelation or 'wave', which occurs in a large dataset used to determine the location of CNV across the genome. By removing this artifact we are able to obtain both a more biologically meaningful clustering of the data and an increase in the number of CNVs identified by current calling methods without a major increase in the number of false positives detected. Moreover, removing this artifact is critical for the development of a novel model-based CNV calling algorithm - CNVmix - that uses cross-sample information to identify regions of the genome where CNVs occur. For regions of CNV that are identified by both CNVmix and current methods, we demonstrate that CNVmix is better able to categorize samples into groups that represent copy number gains or losses. CONCLUSION: Removing artifactual 'waves' (which appear to be a general feature of array comparative genomic hybridization (aCGH) datasets) and using cross-sample information when identifying CNVs enables more biological information to be extracted from aCGH experiments designed to investigate copy number variation in normal individuals.

摘要

背景:使用微阵列技术的大规模高通量研究已证实,全基因组范围内的拷贝数变异(CNV)比之前认为的更为常见。已知这种变异在诸如HIV-1感染和阿尔茨海默病等表型的出现和发展中起着重要作用。然而,用于分析所产生的复杂数据以及识别CNV区域的方法仍在不断完善。 结果:我们描述了一种全基因组范围的技术假象,即空间自相关或“波”,它出现在用于确定全基因组CNV位置的一个大型数据集中。通过去除这种假象,我们既能获得更具生物学意义的数据聚类,又能在当前的检测方法中识别出更多的CNV,同时检测到的假阳性数量没有大幅增加。此外,去除这种假象对于开发一种基于模型的新型CNV检测算法——CNVmix至关重要,该算法利用跨样本信息来识别基因组中发生CNV的区域。对于通过CNVmix和当前方法都识别出的CNV区域,我们证明CNVmix能更好地将样本分类为代表拷贝数增加或减少的组。 结论:去除人为的“波”(这似乎是阵列比较基因组杂交(aCGH)数据集的一个普遍特征),并在识别CNV时使用跨样本信息,能够从旨在研究正常个体拷贝数变异的aCGH实验中提取更多生物学信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/613bfb8f3e12/gb-2007-8-10-r228-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/b2dd2b0e4542/gb-2007-8-10-r228-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/0b0580a4deb6/gb-2007-8-10-r228-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/307e6f263db5/gb-2007-8-10-r228-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/7b6c4839a663/gb-2007-8-10-r228-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/1476de70f24e/gb-2007-8-10-r228-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/c64333b9bafd/gb-2007-8-10-r228-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/613bfb8f3e12/gb-2007-8-10-r228-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/b2dd2b0e4542/gb-2007-8-10-r228-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/0b0580a4deb6/gb-2007-8-10-r228-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/307e6f263db5/gb-2007-8-10-r228-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/7b6c4839a663/gb-2007-8-10-r228-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/1476de70f24e/gb-2007-8-10-r228-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/c64333b9bafd/gb-2007-8-10-r228-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a9/2246302/613bfb8f3e12/gb-2007-8-10-r228-7.jpg

相似文献

[1]
Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization.

Genome Biol. 2007

[2]
A multi-sample based method for identifying common CNVs in normal human genomic structure using high-resolution aCGH data.

PLoS One. 2011-10-31

[3]
Human copy number polymorphic genes.

Cytogenet Genome Res. 2008

[4]
Large scale copy number variation (CNV) at 14q12 is associated with the presence of genomic abnormalities in neoplasia.

BMC Genomics. 2006-6-6

[5]
CopyMap: localization and calling of copy number variation by joint analysis of hybridization data from multiple individuals.

Bioinformatics. 2010-10-5

[6]
Segmental copy-number variation observed in Japanese by array-CGH.

Ann Hum Genet. 2008-3

[7]
Inter- and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds.

BMC Genomics. 2019-10-22

[8]
The fine-scale and complex architecture of human copy-number variation.

Am J Hum Genet. 2008-3

[9]
Identification of recurrent regions of Copy-Number Variants across multiple individuals.

BMC Bioinformatics. 2010-3-22

[10]
A fused lasso latent feature model for analyzing multi-sample aCGH data.

Biostatistics. 2011-6-3

引用本文的文献

[1]
MicroRNAs Expression Profile in MN1-Altered Astroblastoma.

Biomedicines. 2025-1-6

[2]
VGLL fusions define a new class of intraparenchymal central nervous system schwannoma.

Neuro Oncol. 2025-5-15

[3]
Improving CNV Detection Performance in Microarray Data Using a Machine Learning-Based Approach.

Diagnostics (Basel). 2023-12-29

[4]
Genome-wide association studies for economically important traits in mink using copy number variation.

Sci Rep. 2024-1-2

[5]
A pipeline for copy number profiling of single circulating tumour cells to assess intrapatient tumour heterogeneity.

Mol Oncol. 2022-8

[6]
Bayesian copy number detection and association in large-scale studies.

BMC Cancer. 2020-9-7

[7]
Induction of Effective Immunity against Trypanosoma cruzi.

Infect Immun. 2020-3-23

[8]
DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation.

PLoS One. 2017-7-6

[9]
On the association analysis of CNV data: a fast and robust family-based association method.

BMC Bioinformatics. 2017-4-18

[10]
Diversity and regulatory impact of copy number variation in the primate Macaca fascicularis.

BMC Genomics. 2017-2-10

本文引用的文献

[1]
CGHcall: calling aberrations for array CGH tumor profiles.

Bioinformatics. 2007-4-1

[2]
A comprehensive analysis of common copy-number variations in the human genome.

Am J Hum Genet. 2007-1

[3]
Global variation in copy number in the human genome.

Nature. 2006-11-23

[4]
Accurate and reliable high-throughput detection of copy number variation in the human genome.

Genome Res. 2006-12

[5]
STAC: A method for testing the significance of DNA copy number aberrations across multiple array-CGH experiments.

Genome Res. 2006-9

[6]
Mapping tumor-suppressor genes with multipoint statistics from copy-number-variation data.

Am J Hum Genet. 2006-7

[7]
Detection of gene copy number changes in CGH microarrays using a spatially correlated mixture model.

Bioinformatics. 2006-4-15

[8]
A pseudolikelihood approach for simultaneous analysis of array comparative genomic hybridizations.

Biostatistics. 2006-7

[9]
A high-resolution survey of deletion polymorphism in the human genome.

Nat Genet. 2006-1

[10]
A haplotype map of the human genome.

Nature. 2005-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索