Suppr超能文献

听觉神经病患者中经时间和频谱修正后的言语识别

Speech identification with temporal and spectral modification in subjects with auditory neuropathy.

作者信息

Kumar Name Vijaya, Vanaja C S

机构信息

Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, 570006, India.

出版信息

ISRN Otolaryngol. 2012 Sep 9;2012:671247. doi: 10.5402/2012/671247. Print 2012.

Abstract

Background. The aim of this study was to investigate the individual effects of envelope enhancement and high-pass filtering (500 Hz) on word identification scores in quiet for individuals with Auditory Neuropathy. Method. Twelve individuals with Auditory Neuropathy (six males and six females) with ages ranging from 12 to 40 years participated in the study. Word identification was assessed using bi-syllabic words in each of three speech processing conditions: unprocessed, envelope-enhanced, and high-pass filtered. All signal processing was carried out using MATLAB-7. Results. Word identification scores showed a mean improvement of 18% with envelope enhanced versus unprocessed speech. No significant improvement was observed with high-pass filtered versus unprocessed speech. Conclusion. These results suggest that the compression/expansion signal processing strategy enhances speech identification scores-at least for mild and moderately impaired individuals with AN. In contrast, simple high-pass filtering (i.e., eliminating the low-frequency content of the signal) does not improve speech perception in quiet for individuals with Auditory Neuropathy.

摘要

背景。本研究的目的是调查对于患有听觉神经病的个体,包络增强和高通滤波(500赫兹)对安静环境下单词识别分数的个体影响。方法。12名患有听觉神经病的个体(6名男性和6名女性)参与了本研究,年龄范围在12至40岁之间。在三种语音处理条件下,使用双音节词评估单词识别:未处理、包络增强和高通滤波。所有信号处理均使用MATLAB - 7进行。结果。与未处理语音相比,包络增强后的单词识别分数平均提高了18%。高通滤波语音与未处理语音相比,未观察到显著改善。结论。这些结果表明,压缩/扩展信号处理策略可提高语音识别分数——至少对于患有听觉神经病的轻度和中度受损个体是如此。相比之下,简单的高通滤波(即消除信号的低频成分)并不能改善患有听觉神经病的个体在安静环境下的语音感知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee8/3671706/73c7f7513985/ISRN.OTOLARYNGOLOGY2012-671247.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验