Suppr超能文献

利用人工智能方法预测结构多样的化学物质对鱼类的急性水生毒性。

Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

机构信息

Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research (Council of Scientific & Industrial Research), Lucknow, Uttar Pradesh, India.

出版信息

Ecotoxicol Environ Saf. 2013 Sep;95:221-33. doi: 10.1016/j.ecoenv.2013.05.017. Epub 2013 Jun 12.

Abstract

The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds.

摘要

这项研究旨在开发能够根据 EEC 和欧洲共同体指令,将结构多样的化学物质分类为不同毒性类别的全球建模工具,并使用一组选定的分子描述符预测其在胖头鱼中的急性毒性。相应地,使用实验毒性数据构建了基于人工智能的分类和回归模型,如概率神经网络 (PNN)、广义回归神经网络 (GRNN)、多层感知器神经网络 (MLPN)、径向基函数神经网络 (RBFN)、支持向量机 (SVM)、基因表达编程 (GEP) 和决策树 (DT)。使用 Tanimoto 相似指数和 Brock-Dechert-Scheinkman 统计检验了化学物质数据中的多样性和非线性。使用几种统计参数比较了这里构建的各种模型的预测和泛化能力。PNN 和 GRNN 模型的性能相对优于 MLPN、RBFN、SVM、GEP 和 DT。在两类和四类分类中,PNN 在训练数据 (95.85%和 90.07%) 和验证数据 (91.30%和 86.96%) 中的分类准确性都相当高。GRNN 使测量值与模型预测的 -log LC50 值之间具有高度相关性,无论是训练数据 (0.929) 还是验证数据 (0.910),并且对于两组数据,预测误差 (RMSE) 均较低,分别为 0.52 和 0.49。使用不同鱼类物种 (胖头鱼、蓝鳃鱼、鳟鱼和孔雀鱼) 的外部数据集充分验证了所选 PNN 和 GRNN 模型在预测新化学物质急性毒性方面的效率。PNN 和 GRNN 模型显示出良好的预测和泛化能力,可作为预测结构多样的化合物毒性的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验