Suppr超能文献

Morphology of the human olfactory epithelium.

作者信息

Morrison E E, Costanzo R M

机构信息

Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0551.

出版信息

J Comp Neurol. 1990 Jul 1;297(1):1-13. doi: 10.1002/cne.902970102.

Abstract

The human olfactory epithelium has been previously studied with scanning electron microscopy; however, most studies have been limited to examining the epithelial surface. In an attempt to examine structures below the surface, we scanned epithelial fractures that occurred during tissue preparation. This made it possible to obtain unique three-dimensional images of cell profiles from the mucosal surface through the full depth of the epithelium. We examined supporting cells, olfactory neurons, basal cells, and a fourth cell type, the microvillar cell. Supporting cells had a microvillar surface and were in close contact with olfactory neurons and their processes. Olfactory neurons were primarily located in the middle and lower epithelial regions. Basal cells occurred alone or in clusters adjacent to the basal lamina. Microvillar cells were always observed in the upper epithelial region. They were flask- or pear-shaped, had a tuft of microvilli that extended into the nasal cavity, and a thin axon-like process that passed basally towards the lamina propria. This study represents the first comprehensive scanning electron microscopy examination of the human olfactory epithelium. Three-dimensional images obtained for each epithelial cell type allowed us to examine cell processes and their close contacts, especially between supporting cells and olfactory neurons. These results also revealed the irregular and patchy distribution of olfactory receptors within the human nasal cavity. Further studies that examine the detailed morphology of the human olfactory epithelium should provide a better understanding of the physiological mechanism and clinical disorders that affect olfactory function in humans.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验