Suppr超能文献

具有一般入度和出度分布的临界随机布尔网络中的标度律。

Scaling laws in critical random Boolean networks with general in- and out-degree distributions.

作者信息

Möller Marco, Drossel Barbara

机构信息

Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 6, 64289 Darmstadt, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052106. doi: 10.1103/PhysRevE.87.052106. Epub 2013 May 6.

Abstract

We evaluate analytically and numerically the size of the frozen core and various scaling laws for critical Boolean networks that have a power-law in- and/or out-degree distribution. To this purpose, we generalize an efficient method that has previously been used for conventional random Boolean networks and for networks with power-law in-degree distributions. With this generalization, we can also deal with power-law out-degree distributions. When the power-law exponent is between 2 and 3, the second moment of the distribution diverges with network size, and the scaling exponent of the nonfrozen nodes depends on the degree distribution exponent. Furthermore, the exponent depends also on the dependence of the cutoff of the degree distribution on the system size. Altogether, we obtain an impressive number of different scaling laws depending on the type of cutoff as well as on the exponents of the in- and out-degree distributions. We confirm our scaling arguments and analytical considerations by numerical investigations.

摘要

我们通过解析和数值方法评估了具有幂律入度和/或出度分布的临界布尔网络的冻结核大小及各种标度律。为此,我们推广了一种先前用于传统随机布尔网络和具有幂律入度分布网络的有效方法。通过这种推广,我们也能够处理幂律出度分布。当幂律指数在2到3之间时,分布的二阶矩随网络规模发散,非冻结节点的标度指数取决于度分布指数。此外,该指数还取决于度分布截断与系统规模的依赖关系。总之,根据截断类型以及入度和出度分布的指数,我们得到了数量可观的不同标度律。我们通过数值研究证实了我们的标度论证和分析考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验