Fedotov Sergei, Falconer Steven
School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052139. doi: 10.1103/PhysRevE.87.052139. Epub 2013 May 29.
The description of subdiffusive transport in complex media by fractional equations with a constant anomalous exponent is not robust where the stationary distribution is concerned. The Gibbs-Boltzmann distribution is radically changed by even small spatial perturbations to the anomalous exponent [S. Fedotov and S. Falconer, Phys. Rev. E 85, 031132 (2012)]. To rectify this problem we propose the inclusion of the random death process in the random walk scheme, which is quite natural for biological applications including morphogen gradient formation. From this, we arrive at the modified fractional master equation and analyze its asymptotic behavior, both analytically and by Monte Carlo simulation. We show that this equation is structurally stable against spatial variations of the anomalous exponent. We find that the stationary flux of the particles has a Markovian form with rate functions depending on the anomalous rate functions, the death rate, and the anomalous exponent. Additionally, in the continuous limit we arrive at an advection-diffusion equation where advection and diffusion coefficients depend on both the death rate and anomalous exponent.
对于具有恒定反常指数的分数方程描述复杂介质中的次扩散输运,就稳态分布而言并不稳健。即使反常指数出现微小的空间扰动,吉布斯 - 玻尔兹曼分布也会发生根本性变化 [S. 费多托夫和 S. 法尔科纳,《物理评论E》85, 031132 (2012)]。为纠正此问题,我们提议在随机游走方案中纳入随机死亡过程,这对于包括形态发生素梯度形成在内的生物学应用而言相当自然。由此,我们得到了修正的分数主方程,并通过解析和蒙特卡罗模拟分析了其渐近行为。我们表明,该方程对于反常指数的空间变化具有结构稳定性。我们发现粒子的稳态通量具有马尔可夫形式,其速率函数取决于反常速率函数、死亡率和反常指数。此外,在连续极限情况下,我们得到了一个平流 - 扩散方程,其中平流和扩散系数取决于死亡率和反常指数。