Straka P, Fedotov S
School of Mathematics and Statistics, UNSW Australia, Sydney, NSW 2052, Australia.
School of Mathematics, The University of Manchester, Manchester M13 9PL, UK.
J Theor Biol. 2015 Feb 7;366:71-83. doi: 10.1016/j.jtbi.2014.11.012. Epub 2014 Nov 22.
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.
我们展示了非线性相互作用效应“体积填充”和“粘附”如何能够被纳入细胞和个体生物的分数次扩散输运中。为此,我们使用具有反常捕获的微观随机游走模型,并系统地推导了次扩散细胞或生物平均浓度的一般非马尔可夫和非线性控制方程。我们揭示了非线性与输运的非马尔可夫性质之间的有趣相互作用。在次扩散情形下,这种相互作用表现为非线性项与分数阶导数的非平凡组合。然而,在长时间极限下,这些方程简化为不含分数阶算子的形式。这为聚集现象的研究提供了一种简便方法。特别地,这使我们能够表明体积填充可以防止“反常聚集”,这种反常聚集发生在具有空间变化反常指数的次扩散系统中。