Suppr超能文献

具有非线性粒子相互作用的次扩散输运方程。

Transport equations for subdiffusion with nonlinear particle interaction.

作者信息

Straka P, Fedotov S

机构信息

School of Mathematics and Statistics, UNSW Australia, Sydney, NSW 2052, Australia.

School of Mathematics, The University of Manchester, Manchester M13 9PL, UK.

出版信息

J Theor Biol. 2015 Feb 7;366:71-83. doi: 10.1016/j.jtbi.2014.11.012. Epub 2014 Nov 22.

Abstract

We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.

摘要

我们展示了非线性相互作用效应“体积填充”和“粘附”如何能够被纳入细胞和个体生物的分数次扩散输运中。为此,我们使用具有反常捕获的微观随机游走模型,并系统地推导了次扩散细胞或生物平均浓度的一般非马尔可夫和非线性控制方程。我们揭示了非线性与输运的非马尔可夫性质之间的有趣相互作用。在次扩散情形下,这种相互作用表现为非线性项与分数阶导数的非平凡组合。然而,在长时间极限下,这些方程简化为不含分数阶算子的形式。这为聚集现象的研究提供了一种简便方法。特别地,这使我们能够表明体积填充可以防止“反常聚集”,这种反常聚集发生在具有空间变化反常指数的次扩散系统中。

相似文献

1
Transport equations for subdiffusion with nonlinear particle interaction.
J Theor Biol. 2015 Feb 7;366:71-83. doi: 10.1016/j.jtbi.2014.11.012. Epub 2014 Nov 22.
2
Nonlinear subdiffusive fractional equations and the aggregation phenomenon.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032104. doi: 10.1103/PhysRevE.88.032104. Epub 2013 Sep 3.
3
Nonlinear degradation-enhanced transport of morphogens performing subdiffusion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012107. doi: 10.1103/PhysRevE.89.012107. Epub 2014 Jan 8.
4
Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011117. doi: 10.1103/PhysRevE.81.011117. Epub 2010 Jan 13.
5
Random death process for the regularization of subdiffusive fractional equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052139. doi: 10.1103/PhysRevE.87.052139. Epub 2013 May 29.
6
Subdiffusion, chemotaxis, and anomalous aggregation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 1):021110. doi: 10.1103/PhysRevE.83.021110. Epub 2011 Feb 18.
7
Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 2):066118. doi: 10.1103/PhysRevE.74.066118. Epub 2006 Dec 28.
8
Anomalous transport and nonlinear reactions in spiny dendrites.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041103. doi: 10.1103/PhysRevE.82.041103. Epub 2010 Oct 6.
9
Subdiffusive master equation with space-dependent anomalous exponent and structural instability.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031132. doi: 10.1103/PhysRevE.85.031132. Epub 2012 Mar 21.
10
Ultraslow diffusion in an exactly solvable non-Markovian random walk.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052110. doi: 10.1103/PhysRevE.89.052110. Epub 2014 May 8.

引用本文的文献

1
Tailored Pharmacokinetic model to predict drug trapping in long-term anesthesia.
J Adv Res. 2021 May 21;32:27-36. doi: 10.1016/j.jare.2021.04.004. eCollection 2021 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验