Martínez-Ratón Yuri, Velasco Enrique
Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052314. doi: 10.1103/PhysRevE.87.052314. Epub 2013 May 31.
We derive, from the dimensional-crossover criterion, a fundamental-measure density functional for parallel hard curved rectangles moving on a cylindrical surface. We derive it from the density functional of circular arcs of length σ with centers of mass located on an external circumference of radius R(0). The latter functional in turn is obtained from the corresponding two-dimensional functional for a fluid of hard disks of radius R on a flat surface with centers of mass confined onto a circumference of radius R(0). Thus the curved length of closest approach between the two centers of mass of hard disks on this circumference is σ=2R(0)sin(-1)(R/R(0)), the length of the circular arcs. From the density functional of circular arcs, and by applying a dimensional expansion procedure to the spatial dimension orthogonal to the plane of the circumference, we finally obtain the density functional of curved rectangles of edge lengths σ and L. Along with the derivation, we show that, when the centers of mass of the disks are confined to the exterior circumference of a circle of radius R(0),(i) for R(0)>R, the exact Percus one-dimensional (1D) density functional of circular arcs of length 2R(0)sin(-1)(R/R(0)) is obtained, and (ii) for R(0)<R, the zero-dimensional limit (a cavity that can hold one particle at most) is recovered. We also show that, for R(0)>R, the obtained functional is equivalent to that of parallel hard rectangles on a flat surface of the same lengths, except that now the density profile of curved rectangles is a periodic function of the azimuthal angle, ρ(φ,z)=ρ(φ+2π,z). The phase behavior of a fluid of aligned curved rectangles is obtained by calculating the free-energy branches of smectic, columnar, and crystalline phases for different values of the ratio R(0)/R in the range 1<R(0)/R≤4; the smectic phase turns out to be the most stable except for R(0)/R=4, where the crystalline phase becomes reentrant in a small range of packing fractions. When R(0)/R<1 the transition is absent, since the density functional of curved rectangles reduces to the 1D Percus functional.
我们从维度交叉准则出发,推导出了一个适用于在圆柱面上运动的平行硬曲线矩形的基本度量密度泛函。我们从长度为σ且质心位于半径为R(0)的外圆周上的圆弧的密度泛函推导得出。而后者的泛函又是从半径为R的硬磁盘流体在平面上且质心限制在半径为R(0)的圆周上的相应二维泛函得到的。因此,该圆周上硬磁盘的两个质心之间最接近的曲线长度为σ = 2R(0)sin⁻¹(R/R(0)),即圆弧的长度。从圆弧的密度泛函出发,并通过对与圆周平面正交的空间维度应用维度展开程序,我们最终得到了边长为σ和L的曲线矩形的密度泛函。在推导过程中,我们表明,当磁盘的质心限制在半径为R(0)的圆的外圆周上时,(i) 对于R(0)>R,可得到长度为2R(0)sin⁻¹(R/R(0))的圆弧的精确一维(1D)Percus密度泛函,以及 (ii) 对于R(0)<R,可恢复零维极限(一个最多能容纳一个粒子的空腔)。我们还表明,对于R(0)>R,所得到的泛函等同于相同长度的平行硬矩形在平面上的泛函,只是现在曲线矩形的密度分布是方位角的周期函数,即ρ(φ,z)=ρ(φ + 2π,z)。通过计算1<R(0)/R≤4范围内不同R(0)/R值的近晶相、柱状相和晶相的自由能分支,得到了排列的曲线矩形流体的相行为;结果表明,除了R(0)/R = 4时晶相在小范围的堆积分数内变为再入相外,近晶相是最稳定的。当R(0)/R<1时,不存在转变,因为曲线矩形的密度泛函简化为一维Percus泛函。