López Eduardo
CABDyN Complexity Centre, Saïd Business School, University of Oxford, Park End Street, Oxford OX1 1HP, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052813. doi: 10.1103/PhysRevE.87.052813. Epub 2013 May 30.
Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.
许多自然、技术和社会系统都包含多路相互作用,但却基于加权成对相互作用来进行特征描述和度量。在本文中,我提出了一族模型,其中成对相互作用源自多路相互作用,方法是从超图集合出发,并应用投影来生成加权投影网络集合。我通过解析计算加权投影网络的统计特性,并提出这些特性在理论研究之外的使用方法。即使对于非常简单的生成超图集合,加权投影网络通常也会沿链路表现出权重无序。此外,随着超图大小的变化,多路相互作用的特征会出现在加权投影网络的链路权重上,这将它们与基本的加权成对网络区分开来。这个特征可用于在加权网络数据中搜索隐藏的多路相互作用。我求出了任意均匀秩的超图的渗流阈值和最大组件的大小,将结果转换到投影网络中,并表明该转变是二阶的。这种网络形成的通用方法有潜力为我们对加权网络的理解带来新的启示。