State Key Lab of Biogeology and Environmental Geology, China University of Geosciences , 388 Lumo Road, Wuhan 430074, P R China.
Environ Sci Technol. 2013 Jul 16;47(14):7918-26. doi: 10.1021/es401730s. Epub 2013 Jun 28.
A novel Pd-based electro-Fenton (E-Fenton) process has recently been developed to transform organic contaminants in groundwater. However, it only produces H2O2 and requires addition of Fe(2+). In this study, an innovative approach is developed to effectively regulate the generation of Fe(2+) from an iron cathode in a three-electrode system in addition to H2O2 production. The Fe(2+) is then used for the Pd-catalytic transformation of methyl tert-butyl ether (MTBE) in groundwater. Results from batch experiments suggest Fe(2+) accumulation follows pseudo-first-order kinetics with rate quantitatively regulated by current and pH, and MTBE can be completely transformed. In a specially configured three-electrode column using iron as the first cathode, the localized acidic conditions develop automatically in the iron cathode and Pd zone by partitioning the current between the two cathodes, leading to controllable generation of Fe(2+) and H2O2. Effects of electrolyte concentrations and types as well as humic acid on MTBE transformation are slight. The stable transformation (~70%) in a long-term study (20 days) suggests this improved Pd-based E-Fenton process is sustainable to produce Fe(2+), H2O2, and appropriate pH conditions simultaneously for transforming organic contaminants. This study presents a new concept of generating Fe(2+) from an iron cathode for the processes requiring Fe(2+).
一种新型的基于钯的电芬顿(E-Fenton)工艺最近被开发出来,用于转化地下水中的有机污染物。然而,它只产生 H2O2,需要添加 Fe(2+)。在这项研究中,开发了一种创新的方法,除了生产 H2O2 之外,还可以有效地从三电极系统中的铁阴极调节 Fe(2+)的生成。然后,Fe(2+)用于 Pd 催化转化地下水中的甲基叔丁基醚(MTBE)。批处理实验的结果表明,Fe(2+)的积累遵循准一级动力学,其速率由电流和 pH 值定量调节,并且 MTBE 可以完全转化。在使用铁作为第一阴极的特殊配置的三电极柱中,通过在两个阴极之间分配电流,铁阴极和 Pd 区自动形成局部酸性条件,从而可控地生成 Fe(2+)和 H2O2。电解质浓度和类型以及腐殖酸对 MTBE 转化的影响很小。在一项为期 20 天的长期研究中,稳定的转化(~70%)表明,这种改进的基于 Pd 的 E-Fenton 工艺能够可持续地同时产生 Fe(2+)、H2O2 和适当的 pH 条件,用于转化有机污染物。本研究提出了一种从铁阴极产生 Fe(2+)的新概念,适用于需要 Fe(2+)的工艺。