Department & Institute of Psychiatry, University of São Paulo Medical School, Rua Ovídio Pires de Campos 785, 3° Andar Ala Norte, Sala 9 (PROTOC), CEP 05403-010, São Paulo, Brazil.
J Affect Disord. 2013 Sep 25;150(3):1213-6. doi: 10.1016/j.jad.2013.05.041. Epub 2013 Jun 14.
Recently, machine learning methods have been used to discriminate, on an individual basis, patients from healthy controls through brain structural magnetic resonance imaging (MRI). However, the application of these methods to predict the severity of psychiatric symptoms is less common.
Herein, support vector regression (SVR) was employed to evaluate whether gray matter volumes encompassing cortical-subcortical loops contain discriminative information to predict obsessive-compulsive disorder (OCD) symptom severity in 37 treatment-naïve adult OCD patients.
The Pearson correlation coefficient between predicted and observed symptom severity scores was 0.49 (p=0.002) for total Dimensional Yale-Brown Obsessive-Compulsive Scale (DY-BOCS) and 0.44 (p=0.006) for total Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). The regions that contained the most discriminative information were the left medial orbitofrontal cortex and the left putamen for both scales.
Our sample is relatively small and our results must be replicated with independent and larger samples.
These results indicate that machine learning methods such as SVR analysis may identify neurobiological markers to predict OCD symptom severity based on individual structural MRI datasets.
最近,机器学习方法已被用于通过脑结构磁共振成像(MRI)对个体患者与健康对照进行区分。然而,这些方法在预测精神症状严重程度方面的应用则较少。
本研究采用支持向量回归(SVR)评估了包括皮质-皮质下回路在内的灰质体积是否包含区分信息,以预测 37 例未经治疗的成年强迫症(OCD)患者的 OCD 症状严重程度。
对于总维度耶鲁-布朗强迫症量表(DY-BOCS),预测与观察到的症状严重程度评分之间的 Pearson 相关系数为 0.49(p=0.002),对于总耶鲁-布朗强迫症量表(Y-BOCS),Pearson 相关系数为 0.44(p=0.006)。对于这两个量表,最具区分信息的区域是左侧内侧眶额皮质和左侧壳核。
我们的样本相对较小,我们的结果必须通过独立的更大样本进行复制。
这些结果表明,机器学习方法(如 SVR 分析)可以根据个体结构 MRI 数据集识别出预测 OCD 症状严重程度的神经生物学标志物。