Suppr超能文献

[使用表皮生长因子受体delE746-A750和L858R突变特异性抗体对肺腺癌进行免疫组织化学检测]

[Immunohistochemistry using epidermal growth factor receptor mutation-specific antibodies of delE746-A750 and L858R in lung adenocarcinomas].

作者信息

Fan Xiang-shan, Liu Biao, Yu Bo, Shi Shan-shan, Wang Xuan, Zhang Jin, Wang Jian-dong, Lu Zhen-feng, Ma Heng-hui, Zhou Xiao-jun

机构信息

Department of Pathology, Nanjing University Medical School, Nanjing, China.

出版信息

Zhonghua Bing Li Xue Za Zhi. 2013 Mar;42(3):173-7. doi: 10.3760/cma.j.issn.0529-5807.2013.03.007.

Abstract

OBJECTIVE

To evaluate the immunohistochemical detection of epidermal growth factor receptor(EGFR) mutations using two EGFR mutation-specific monoclonal antibodies: delE746-A750 and L858R.

METHODS

A total of 175 paraffin-embedded lung adenocarcinoma tissue samples previously genotyped by directive DNA sequencing were subject to immunostaining using delE746-A750 and L858R antibodies.

RESULTS

There was no significant difference of mutation detection between DNA sequence analysis and delE746-A750 and/or L858R immunostaining (33.7% vs 30.9%, P > 0.05). The overall sensitivity, specificity, positive predictive value and negative predictive value of immunostaining using these two EGFR mutation-specific antibodies were 83.1%, 95.7%, 90.7% and 90.9%, respectively.

CONCLUSION

With high sensitivity and good specificity, immunohistochemistry using EGFR mutation-specific monoclonal antibodies is an adequate, easy and cost-effective prescreening method to detect EGFR mutations using paraffin-embedded tissue specimens of lung adenocarcinomas.

摘要

目的

使用两种表皮生长因子受体(EGFR)突变特异性单克隆抗体delE746-A750和L858R评估免疫组织化学检测EGFR突变。

方法

对175份先前通过直接DNA测序进行基因分型的石蜡包埋肺腺癌组织样本,使用delE746-A750和L858R抗体进行免疫染色。

结果

DNA序列分析与delE746-A750和/或L858R免疫染色之间的突变检测无显著差异(33.7%对30.9%,P>0.05)。使用这两种EGFR突变特异性抗体进行免疫染色的总体敏感性、特异性、阳性预测值和阴性预测值分别为83.1%、95.7%、90.7%和90.9%。

结论

使用EGFR突变特异性单克隆抗体的免疫组织化学具有高敏感性和良好的特异性,是一种使用肺腺癌石蜡包埋组织标本检测EGFR突变的合适、简便且经济高效的预筛查方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验