Suppr超能文献

神经环:一种分析神经编码内在结构的代数工具。

The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes.

机构信息

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE, USA.

出版信息

Bull Math Biol. 2013 Sep;75(9):1571-611. doi: 10.1007/s11538-013-9860-3. Epub 2013 Jun 15.

Abstract

Neurons in the brain represent external stimuli via neural codes. These codes often arise from stereotyped stimulus-response maps, associating to each neuron a convex receptive field. An important problem confronted by the brain is to infer properties of a represented stimulus space without knowledge of the receptive fields, using only the intrinsic structure of the neural code. How does the brain do this? To address this question, it is important to determine what stimulus space features can--in principle--be extracted from neural codes. This motivates us to define the neural ring and a related neural ideal, algebraic objects that encode the full combinatorial data of a neural code. Our main finding is that these objects can be expressed in a "canonical form" that directly translates to a minimal description of the receptive field structure intrinsic to the code. We also find connections to Stanley-Reisner rings, and use ideas similar to those in the theory of monomial ideals to obtain an algorithm for computing the primary decomposition of pseudo-monomial ideals. This allows us to algorithmically extract the canonical form associated to any neural code, providing the groundwork for inferring stimulus space features from neural activity alone.

摘要

大脑中的神经元通过神经码来表示外部刺激。这些代码通常来自于刻板的刺激-反应映射,将每个神经元与一个凸的感受野联系起来。大脑面临的一个重要问题是,在不知道感受野的情况下,仅使用神经码的内在结构,来推断所表示的刺激空间的性质。大脑是如何做到这一点的?为了解决这个问题,重要的是要确定从神经码中可以提取哪些刺激空间特征。这促使我们定义神经环和相关的神经理想,这是编码神经码的全部组合数据的代数对象。我们的主要发现是,这些对象可以用“标准形式”表示,直接转化为代码固有感受野结构的最小描述。我们还发现与斯坦利-里斯纳环的联系,并使用类似于单项式理想理论中的思想,获得了计算伪单项式理想的主分解的算法。这使我们能够从任何神经码中提取出标准形式,为仅从神经活动推断刺激空间特征提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验