Suppr超能文献

生成模型在网络神经科学中的应用:前景与展望。

Generative models for network neuroscience: prospects and promise.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

出版信息

J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0623. Epub 2017 Nov 29.

Abstract

Network neuroscience is the emerging discipline concerned with investigating the complex patterns of interconnections found in neural systems, and identifying principles with which to understand them. Within this discipline, one particularly powerful approach is network generative modelling, in which wiring rules are algorithmically implemented to produce synthetic network architectures with the same properties as observed in empirical network data. Successful models can highlight the principles by which a network is organized and potentially uncover the mechanisms by which it grows and develops. Here, we review the prospects and promise of generative models for network neuroscience. We begin with a primer on network generative models, with a discussion of compressibility and predictability, and utility in intuiting mechanisms, followed by a short history on their use in network science, broadly. We then discuss generative models in practice and application, paying particular attention to the critical need for cross-validation. Next, we review generative models of biological neural networks, both at the cellular and large-scale level, and across a variety of species including , , mouse, rat, cat, macaque and human. We offer a careful treatment of a few relevant distinctions, including differences between generative models and null models, sufficiency and redundancy, inferring and claiming mechanism, and functional and structural connectivity. We close with a discussion of future directions, outlining exciting frontiers both in empirical data collection efforts as well as in method and theory development that, together, further the utility of the generative network modelling approach for network neuroscience.

摘要

网络神经科学是一个新兴的学科,致力于研究神经网络中发现的复杂连接模式,并确定理解它们的原则。在这个学科中,一种特别强大的方法是网络生成模型,其中布线规则通过算法实现,以产生具有与经验网络数据相同属性的合成网络架构。成功的模型可以突出网络组织的原则,并有可能揭示其生长和发展的机制。在这里,我们回顾了生成模型在网络神经科学中的前景和潜力。我们首先介绍网络生成模型的概述,讨论压缩性和可预测性,以及在直觉机制方面的实用性,然后简要回顾它们在网络科学中的广泛应用。然后,我们讨论了生成模型在实践和应用中的应用,特别关注交叉验证的关键需求。接下来,我们回顾了生物神经网络的生成模型,包括细胞和大规模水平,以及包括 、 、小鼠、大鼠、猫、猕猴和人类在内的各种物种。我们仔细处理了一些相关的区别,包括生成模型和零模型之间的区别、充分性和冗余性、推断和声称机制,以及功能和结构连接。最后,我们讨论了未来的方向,概述了在实证数据收集工作以及方法和理论发展方面令人兴奋的前沿,这些共同进一步提高了生成网络建模方法在网络神经科学中的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验