Institute for Neurophysiology, University of Cologne, Cologne, Germany.
Epilepsia. 2013 Sep;54(9):1542-50. doi: 10.1111/epi.12250. Epub 2013 Jun 17.
Lamotrigine (LTG) is a popular modern antiepileptic drug (AED); however, its mechanism of action has yet to be fully understood, as it is known to modulate many members of several ion channel families. In heterologous systems, LTG inhibits Cav 2.3 (R-type) calcium currents, which contribute to kainic-acid (KA)-induced epilepsy in vivo. To gain insight into the role of R-type currents in LTG drug action in vivo, we compared the effects of LTG to two other AEDs in Cav 2.3-deficient mice and controls on KA-induced seizures.
Behavioral seizure rating and quantitative electrocorticography were performed after injection of 20 mg/kg (and 30 mg/kg) KA. One hour before KA injection, mice were pretreated with 30 mg/kg LTG, 50 mg/kg topiramate (TPM), or 30 mg/kg lacosamide (LSM).
Ablation of Cav 2.3 reduced total seizure scores by 28.6% (p = 0.0012), and pretreatment with LTG reduced seizure activity of control mice by 23.2% (p = 0.02). In Cav 2.3-deficient mice, LTG pretreatment increased seizure activity by 22.1% (p = 0.018) and increased the percentage of degenerated CA1 pyramidal neurons (p = 0.02). All three AEDs reduced seizure activity in control mice; however, only the non-calcium channel modulating AED, LSM, had an anticonvulsive effect in Cav 2.3-deficient mice. Furthermore, LTG altered electrocorticographic parameters differently in the two genotypes: decreasing relative power of ictal spikes in control mice but increasing relative power of high frequency fast ripple discharges during seizures in Cav 2.3-deficient mice.
These findings provided the first in vivo evidence for an essential role for Cav 2.3 in LTG pharmacology and shed light on a paradoxical effect of LTG in their absence. Furthermore, LTG appears to promote ictal activity in Cav 2.3-deficient mice by increasing high frequency components of seizures, resulting in increased neurotoxicity in the CA1. This paradoxical mechanism, possibly reflecting rebound hyperexcitation of pyramidal CA1 neurons after increased inhibition, may be key in understanding LTG-induced seizure aggravation observed in clinical practice.
拉莫三嗪(LTG)是一种流行的现代抗癫痫药物(AED);然而,其作用机制尚未完全了解,因为它已知可调节几个离子通道家族的许多成员。在异源系统中,LTG 抑制 Cav 2.3(R 型)钙电流,该电流有助于体内海人酸(KA)诱导的癫痫发作。为了深入了解 R 型电流在体内 LTG 药物作用中的作用,我们比较了 LTG 与 Cav 2.3 缺陷小鼠和对照小鼠中另外两种 AED(LTG、托吡酯[TPM]和拉科酰胺[LSM])对 KA 诱导的癫痫发作的影响。
注射 20mg/kg(和 30mg/kg)KA 后进行行为性癫痫发作评分和定量皮层脑电图。在注射 KA 前 1 小时,用 30mg/kg LTG、50mg/kg TPM 或 30mg/kg LSM 预处理小鼠。
Cav 2.3 缺失使总癫痫评分降低 28.6%(p=0.0012),LTG 预处理使对照组小鼠的癫痫发作活动降低 23.2%(p=0.02)。在 Cav 2.3 缺陷小鼠中,LTG 预处理使癫痫发作活动增加 22.1%(p=0.018),并增加 CA1 锥体神经元变性的百分比(p=0.02)。三种 AED 均降低对照组小鼠的癫痫发作活动;然而,只有非钙通道调节 AED LSM 在 Cav 2.3 缺陷小鼠中具有抗惊厥作用。此外,LTG 以两种基因型不同的方式改变皮层脑电图参数:在对照组小鼠中降低癫痫发作棘波的相对功率,但在 Cav 2.3 缺陷小鼠中增加癫痫发作期间高频快纹放电的相对功率。
这些发现为 Cav 2.3 在 LTG 药理学中的重要作用提供了首个体内证据,并阐明了 LTG 在 Cav 2.3 缺失时的矛盾作用。此外,LTG 似乎通过增加癫痫发作的高频成分来促进 Cav 2.3 缺陷小鼠的癫痫发作活动,从而导致 CA1 中的神经毒性增加。这种矛盾的机制可能反映了增加抑制后 CA1 锥体神经元的反弹过度兴奋,这可能是理解临床实践中观察到的 LTG 诱导的癫痫加重的关键。