Centre de Psychiatrie et Neurosciences, Faculté de Médecine, Université Paris Descartes, UMR 894, Sorbonne Paris Cité, 2 ter rue d'Alésia, Paris 75014, France.
Eur J Neurosci. 2013 Jun;37(12):1931-8. doi: 10.1111/ejn.12226.
The learning and memory deficits associated with non-pathological ageing mainly result from alterations to the plasticity of neuronal network dynamics within the hippocampus. In addition to the broad spectrum of changes that affect the morphology and function of hippocampal excitatory circuits in the ageing brain, the impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDA-R) is a typical feature, altering the induction and maintenance of long-term potentiation, a major form of synaptic plasticity. In addition to glutamate, the binding of a co-agonist at the strychnine-insensitive glycine-binding site is required for NMDA-R activation. This review presents recent evidence that: (i) the amino acid D-serine is an endogenous co-agonist of synaptic NMDA-R and necessary for long-term potentiation expression, (ii) reduced d-serine levels in the hippocampus contribute to synaptic plasticity and memory deficits in normal ageing, and (iii) age-related oxidative stress selectively targets hippocampal serine racemase to impact D-serine availability in neuronal networks. These results emphasize the critical role of the hippocampal d-serine-dependent pathway in changes affecting neuronal network dynamics in physiological ageing that underlie memory deficits. In addition, the central role of serine racemase in these changes opens new perspectives in the search for relevant therapeutic strategies aimed at reducing age-related memory defects.
与非病理性衰老相关的学习和记忆缺陷主要是由于海马体神经元网络动态的可塑性改变所致。除了影响衰老大脑中海马兴奋性回路形态和功能的广泛变化外,N-甲基-D-天冬氨酸型谷氨酸受体(NMDA-R)的激活受损是一个典型特征,改变了长时程增强的诱导和维持,这是一种主要的突触可塑性形式。除谷氨酸外,NMDA-R 的激活还需要在士的宁不敏感的甘氨酸结合位点与共激动剂结合。这篇综述介绍了最近的证据:(i)氨基酸 D-丝氨酸是突触 NMDA-R 的内源性共激动剂,是长时程增强表达所必需的,(ii)海马体中 D-丝氨酸水平降低导致正常衰老时的突触可塑性和记忆缺陷,以及(iii)与年龄相关的氧化应激选择性靶向海马体丝氨酸外消旋酶,影响神经元网络中 D-丝氨酸的可用性。这些结果强调了海马体 D-丝氨酸依赖途径在影响生理衰老中神经元网络动态变化方面的关键作用,这些变化是记忆缺陷的基础。此外,丝氨酸外消旋酶在这些变化中的核心作用为寻找旨在减少与年龄相关的记忆缺陷的相关治疗策略开辟了新的视角。