Suppr超能文献

光传导的进化、脊椎动物感光器和视网膜。

Evolution of phototransduction, vertebrate photoreceptors and retina.

机构信息

Department of Neuroscience, and ARC Centre of Excellence in Vision Science, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia.

出版信息

Prog Retin Eye Res. 2013 Sep;36:52-119. doi: 10.1016/j.preteyeres.2013.06.001. Epub 2013 Jun 19.

Abstract

Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates.

摘要

本文回顾了与脊椎动物光感受器和光转导进化相关的广泛研究证据,以便综合出一个关于视锥细胞、视杆细胞和脊椎动物视网膜进化过程中主要步骤的假说。祖先视蛋白起源于 7000 万年前(Mya),在刺胞动物与我们的谱系分化之前,它经历了三次复制,形成了三个分支。在脊索动物进化过程中,纤毛视蛋白(C-opsins)经历了多次改进,产生了特征为视锥细胞和视杆细胞的“漂白”视蛋白。在脊椎动物谱系基部附近发生的“2R”全基因组复制之前,“视锥细胞”已经存在;它们具有与现代视锥细胞基本相同的转导级联,以及两类视蛋白:SWS 和 LWS(短波长和长波长敏感)。这些视锥细胞似乎直接与神经节细胞形成突触联系,在类似于现存非哺乳动物脊椎动物的松果体的双层视网膜中。有趣的是,这些神经节细胞似乎是微绒毛光感受器细胞的后代。这个双层视网膜没有晶状体,它可能介导了昼夜节律,而不是空间视觉。随后,视网膜双极细胞作为纤毛光感受器细胞的变体进化而来,极大地提高了视网膜的计算能力。随着晶状体和眼外肌的出现,空间成像信息可用于中央处理,从而在脊椎动物中产生了视觉,这一事件发生在 5000 万年前。“2R”基因组复制使适合视杆细胞和视锥细胞的级联组件得以进一步细化,并导致了五种视觉视蛋白的出现。“真正的视杆细胞”出现的确切时间尚不清楚,但它可能直到有颌类和无颌类脊椎动物分化之后才出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验