Li Zhilin, Song Peng
Center for Research in Scientific Computation & Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.
Comput Struct. 2013 Jun 1;122:249-258. doi: 10.1016/j.compstruc.2013.03.013.
In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515-527). The interface is captured by the zero level set of a Lipschitz continuous function φ(, , ). Our adaptive mesh refinement is built within a small band of |φ(, , )| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method.
在本文中,我们针对具有移动界面的流动问题,开发了一种浸入界面法的自适应网格细化策略。这项工作基于论文[12](《计算物理通讯》,12(2012),515 - 527)中为二维椭圆界面问题所开发的自适应网格细化(AMR)方法。界面由一个Lipschitz连续函数φ(, , )的零水平集捕获。我们的自适应网格细化是在|φ(, , )| ≤ δ的小带宽内构建更精细的笛卡尔网格。针对斯托克斯方程和纳维 - 斯托克斯方程,利用精确解、由表面张力驱动的移动界面以及经典气泡变形问题对AMR - IIM进行了验证。本文还针对水平集方法提出了一种新的简单面积守恒策略。