Suppr超能文献

应用于流动问题的浸入界面法的自适应网格细化技术。

Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.

作者信息

Li Zhilin, Song Peng

机构信息

Center for Research in Scientific Computation & Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Comput Struct. 2013 Jun 1;122:249-258. doi: 10.1016/j.compstruc.2013.03.013.

Abstract

In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515-527). The interface is captured by the zero level set of a Lipschitz continuous function φ(, , ). Our adaptive mesh refinement is built within a small band of |φ(, , )| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method.

摘要

在本文中,我们针对具有移动界面的流动问题,开发了一种浸入界面法的自适应网格细化策略。这项工作基于论文[12](《计算物理通讯》,12(2012),515 - 527)中为二维椭圆界面问题所开发的自适应网格细化(AMR)方法。界面由一个Lipschitz连续函数φ(, , )的零水平集捕获。我们的自适应网格细化是在|φ(, , )| ≤ δ的小带宽内构建更精细的笛卡尔网格。针对斯托克斯方程和纳维 - 斯托克斯方程,利用精确解、由表面张力驱动的移动界面以及经典气泡变形问题对AMR - IIM进行了验证。本文还针对水平集方法提出了一种新的简单面积守恒策略。

相似文献

9
MIB Galerkin method for elliptic interface problems.用于椭圆型界面问题的MIB伽辽金方法。
J Comput Appl Math. 2014 Dec 15;272:195-220. doi: 10.1016/j.cam.2014.05.014.
10
AN AUGMENTED IMMERSED INTERFACE METHOD FOR MOVING STRUCTURES WITH MASS.一种用于具有质量的移动结构的增强浸入界面方法。
Discrete Continuous Dyn Syst Ser B. 2012 Jun;17(4):1175-1184. doi: 10.3934/dcdsb.2012.17.1175.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验