A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991, Moscow, Russia.
ACS Nano. 2013 Jul 23;7(7):6346-53. doi: 10.1021/nn4024152. Epub 2013 Jun 28.
We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.
我们报告了封装在单壁碳纳米管 (SWCNT) 中的石墨烯纳米带 (GNR) 的光致发光 (PL)。在可见光谱范围内检测到源自 GNR 的新 PL 光谱特征。GNR 的 PL 峰具有共振特征,其位置取决于与理论预测一致的带状几何结构。GNR 是使用受限聚合和 coronene 分子的熔合合成的。GNR@SWCNT 材料在近红外 (IR) 和可见区域均表现出明亮的光致发光。在近红外光谱范围内的光致发光激发映射中,在 coronene 分子在纳米管内聚合之后,观察到 SWCNT 峰的几何依赖性位移(激发和发射时高达 11 meV)。这种行为归因于 coronene 分子插入引起的 SWCNT 应变。