Miyazaki Celina M, Riul Antonio, Dos Santos David S, Ferreira Mariselma, Constantino Carlos J L, Pereira-da-Silva Marcelo A, Paupitz Ricardo, Galvão Douglas S, Oliveira Osvaldo N
Center for Natural and Human Sciences, Federal University of ABC, 09210-170 Santo André, SP, Brazil.
Int J Mol Sci. 2013 Jun 24;14(7):12953-69. doi: 10.3390/ijms140712953.
We report on optimized architectures containing layer-by-layer (LbL) films of natural rubber latex (NRL), carboxymethyl-chitosan (CMC) and magnetite (Fe3O4) nanoparticles (MNPs) deposited on flexible substrates, which could be easily bent by an external magnetic field. The mechanical response depended on the number of deposited layers and was explained semi-quantitatively with a fully atomistic model, where the LbL film was represented as superposing layers of hexagonal graphene-like atomic arrangements deposited on a stiffer substrate. The bending with no direct current or voltage being applied to a supramolecular structure containing biocompatible and antimicrobial materials represents a proof-of-principle experiment that is promising for tissue engineering applications in biomedicine.
我们报道了一种优化的结构,该结构包含天然橡胶乳胶(NRL)、羧甲基壳聚糖(CMC)和磁铁矿(Fe3O4)纳米颗粒(MNP)的逐层(LbL)薄膜,这些薄膜沉积在柔性基板上,能够在外加磁场作用下轻松弯曲。力学响应取决于沉积层数,并通过一个全原子模型进行了半定量解释,在该模型中,LbL薄膜被表示为沉积在更硬基板上的类似六边形石墨烯原子排列的叠加层。在不向包含生物相容性和抗菌材料的超分子结构施加直流电或电压的情况下实现弯曲,这代表了一个原理验证实验,对生物医学中的组织工程应用具有前景。