Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
Sci Rep. 2013;3:2072. doi: 10.1038/srep02072.
Colloidal clusters are an unusual state of matter where tunable interactions enable a sufficient reduction in their degrees of freedom that their energy landscapes can become tractable - they form a playground for statistical mechanics and promise unprecedented control of structure on the submicron lengthscale. We study colloidal clusters in a system where a short-ranged polymer-induced attraction drives clustering, while a weak, long-ranged electrostatic repulsion prevents extensive aggregation. We compare experimental yields of cluster structures with theory which assumes simple addition of competing isotropic interactions between the colloids. Here we show that for clusters of size 4 ≤ m ≤ 7, the yield of minimum energy clusters is much less than expected. We attribute this to an anisotropic self-organized surface charge distribution which leads to unexpected kinetic trapping. We introduce a model for the coupling between counterions and binding sites on the colloid surface with which we interpret our findings.
胶态团簇是一种特殊的物质状态,可调相互作用使其自由度得到充分降低,从而使它们的能量景观变得易于处理——它们为统计力学提供了一个游乐场,并有望对亚微米长度尺度的结构进行前所未有的控制。我们在一个系统中研究胶态团簇,在这个系统中,短程聚合物诱导的吸引力驱动团聚,而弱的长程静电排斥阻止广泛的聚集。我们将实验得到的团簇结构与理论进行比较,理论假设胶体之间存在简单的各向同性相互竞争。在这里,我们表明对于大小为 4≤m≤7 的团簇,最小能量团簇的产率远低于预期。我们将这归因于各向异性的自组织表面电荷分布,这导致了意想不到的动力学捕获。我们引入了一个反离子与胶体表面结合位点之间耦合的模型,并用该模型来解释我们的发现。