Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan.
J Mol Model. 2013 Sep;19(9):3813-9. doi: 10.1007/s00894-013-1918-5. Epub 2013 Jun 25.
The adsorption of molecular hydrogen on few-layer graphene (FLG) structures is studied using molecular dynamics simulations. The interaction between graphene and hydrogen molecules is described by the Lennard-Jones potential. The effects of pressure, temperature, number of layers in a FLG, and FLG interlayer spacing are evaluated in terms of molecular trajectories, binding energy, binding force, and gravimetric hydrogen storage capacity (HSC). The simulation results show that the effects of temperature and pressure can offset each other to improve HSC. An insufficient interlayer spacing (0.35 nm) largely limits the HSC of FLG because hydrogen adsorbed at the edges of the graphene prevents more hydrogen from entering the structure. A low temperature (77 K), a high pressure, a large number of layers in a FLG, and a large FLG interlayer spacing maximize the HSC.
使用分子动力学模拟研究了分子氢在少层石墨烯(FLG)结构上的吸附。石墨烯与氢气分子之间的相互作用通过 Lennard-Jones 势能来描述。根据分子轨迹、结合能、结合力和重量储氢容量(HSC)来评估压力、温度、FLG 中层数和 FLG 层间间距的影响。模拟结果表明,温度和压力的影响可以相互抵消,以提高 HSC。层间间距过小(0.35nm)极大地限制了 FLG 的 HSC,因为吸附在石墨烯边缘的氢会阻止更多的氢进入结构。低温(77K)、高压、FLG 中较多的层数和较大的 FLG 层间间距可使 HSC 最大化。