Department of Materials Science and Engineering, Hanyang University, Seoul, Korea.
Phys Chem Chem Phys. 2013 Aug 14;15(30):12757-61. doi: 10.1039/c3cp51365c.
Strain-engineered adsorption of Ti on pyridinic nitrogen-doped graphene (PNG) and the hydrogen storage characteristics of Ti-decorated PNG are examined by using a first-principles approach using density functional theory (DFT) calculations. Under the strain from -5% to 5%, binding energy (Eb) of Ti on PNG was higher than cohesive energy of the Ti bulk. Thus, it is expected that Ti atoms prefer atomic dispersion in PNG to clustering in the applied strain range. For this Ti-PNG system, the Eb variation of the second and third adsorbed H2 molecule according to the strain was a large value of 0.217 and 0.254 eV, respectively. Therefore, strain-engineered Ti-decorated PNG is adaptable to diverse operation conditions of hydrogen storage systems for mobile applications. In addition, by applying compressive strain, this system can adsorb the fourth H2 molecule, suggesting that the compressive strain can be used to improve hydrogen storage capacity. Thus, it can be expected that strain-engineered Ti-decorated PNG can be considered to be a promising potential hydrogen storage medium.
采用基于密度泛函理论(DFT)的第一性原理计算方法,研究了应变工程吸附Ti 原子在吡啶氮掺杂石墨烯(PNG)上的吸附作用以及 Ti 修饰的 PNG 的储氢特性。在应变范围为-5%至 5%时,Ti 在 PNG 上的结合能(Eb)高于 Ti 体的内聚能。因此,预计 Ti 原子在 PNG 中优先以原子形式分散,而不是在施加的应变范围内聚集。对于 Ti-PNG 体系,根据应变,第二个和第三个吸附 H2 分子的 Eb 变化分别为 0.217 和 0.254 eV,这是一个较大的值。因此,应变工程 Ti 修饰的 PNG 可以适应移动应用中储氢系统的各种操作条件。此外,通过施加压缩应变,可以吸附第四个 H2 分子,这表明压缩应变可用于提高储氢能力。因此,可以预期应变工程 Ti 修饰的 PNG 可以被认为是一种很有前途的潜在储氢介质。