Suppr超能文献

膜片钳膜的结构与动力学:利用微分干涉相差光学显微镜的研究

The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy.

作者信息

Sokabe M, Sachs F

机构信息

Department of Biophysical Sciences, State University of New York, Buffalo 14214.

出版信息

J Cell Biol. 1990 Aug;111(2):599-606. doi: 10.1083/jcb.111.2.599.

Abstract

We have developed techniques for micromanipulation under high power video microscopy. We have used these to study the structure and motion of patch-clamped membranes when driven by pressure steps. Patch-clamped membranes do not consist of just a membrane, but rather a plug of membrane-covered cytoplasm. There are organelles and vesicles within the cytoplasm in the pipette tip of both cell-attached and excised patches. The cytoplasm is capable of active contraction normal to the plane of the membrane. With suction applied before seal formation, vesicles may be swept from the cell surface by shear stress generated from the flow of saline over the cell surface. In this case, patch recordings are made from membrane that was not originally present under the tip. The vesicles may break, or fuse and break, to form the gigasealed patch. Patch membranes adhere strongly to the wall of the pipette so that at zero transmural pressure the membranes tend to be normal to the wall. With transmural pressure gradients, the membranes generally become spherical; the radius of curvature decreasing with increasing pressure. Some patches have nonuniform curvature demonstrating that forces normal to the membrane may be significant. Membranes often do not respond quickly to changes in pipette pressure, probably because viscoelastic cytoplasm reduces the rate of flow through the tip of the pipette. Inside-out patches may be peeled from the walls of the pipette, and even everted (with positive pressure), without losing the seal. This suggests that the gigaseal is a distributed property of the membrane-glass interface.

摘要

我们已经开发出了在高倍视频显微镜下进行显微操作的技术。我们利用这些技术研究了在压力阶跃驱动下膜片钳制膜的结构和运动。膜片钳制膜不仅仅由一层膜组成,而是由一团被膜覆盖的细胞质组成。在细胞贴附式和切除式膜片的移液器尖端的细胞质中存在细胞器和囊泡。细胞质能够在垂直于膜平面的方向上进行主动收缩。在形成封接之前施加吸力时,囊泡可能会被细胞表面盐水流动产生的剪切力从细胞表面扫走。在这种情况下,膜片记录是从最初不在尖端下方的膜上进行的。囊泡可能会破裂,或者融合并破裂,以形成千兆封接膜片。膜片与移液器壁紧密粘附,因此在零跨膜压力下,膜片倾向于与壁垂直。随着跨膜压力梯度的变化,膜片通常会变成球形;曲率半径随着压力的增加而减小。一些膜片具有不均匀的曲率,这表明垂直于膜的力可能很显著。膜片通常不会对移液器压力的变化迅速做出反应,可能是因为粘弹性细胞质降低了通过移液器尖端的流速。内向外膜片可以从移液器壁上剥离,甚至可以外翻(在正压下),而不会失去封接。这表明千兆封接是膜 - 玻璃界面的一种分布式特性。

相似文献

2
The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy.
J Cell Biol. 1991 Jan;112(1):125-34. doi: 10.1083/jcb.112.1.125.
3
Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae.
Pflugers Arch. 1998 Nov;436(6):999-1013. doi: 10.1007/s004240050735.
5
Biophysics and structure of the patch and the gigaseal.
Biophys J. 2009 Aug 5;97(3):738-47. doi: 10.1016/j.bpj.2009.05.018.
6
Lipid-glass adhesion in giga-sealed patch-clamped membranes.
Biophys J. 1994 Jan;66(1):75-9. doi: 10.1016/S0006-3495(94)80752-0.
8
Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes.
J Physiol. 2007 May 15;581(Pt 1):369-87. doi: 10.1113/jphysiol.2006.125021. Epub 2007 Jan 25.
9
A novel way to go whole-cell in patch-clamp experiments.
IEEE Trans Biomed Eng. 2010 Nov;57(11). doi: 10.1109/TBME.2010.2055055. Epub 2010 Jun 28.
10
Mechanotransducing ion channels in C6 glioma cells.
Glia. 1996 Nov;18(3):161-76. doi: 10.1002/(SICI)1098-1136(199611)18:3<161::AID-GLIA1>3.0.CO;2-2.

引用本文的文献

1
Interaction with stomatin directs human proton channels into cholesterol-dependent membrane domains.
Biophys J. 2024 Dec 17;123(24):4180-4190. doi: 10.1016/j.bpj.2024.03.003. Epub 2024 Mar 5.
2
Stretch response of the mechano-gated channel TMEM63A in membrane patches and single cells.
Am J Physiol Cell Physiol. 2024 Feb 1;326(2):C622-C631. doi: 10.1152/ajpcell.00583.2023. Epub 2024 Jan 8.
3
Fast functional mapping of ligand-gated ion channels.
Commun Biol. 2023 Oct 2;6(1):1003. doi: 10.1038/s42003-023-05340-w.
4
Capsaicin as an amphipathic modulator of Na1.5 mechanosensitivity.
Channels (Austin). 2022 Dec;16(1):9-26. doi: 10.1080/19336950.2022.2026015.
5
Mechanosensing: From Osmoregulation to L-Glutamate Secretion for the Avian Microbiota-Gut-Brain Axis.
Microorganisms. 2021 Jan 19;9(1):201. doi: 10.3390/microorganisms9010201.
7
Mechanically Activated Ion Channels.
Neuron. 2015 Sep 23;87(6):1162-1179. doi: 10.1016/j.neuron.2015.08.032.
8
Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings.
PLoS One. 2014 Jun 19;9(6):e98808. doi: 10.1371/journal.pone.0098808. eCollection 2014.
9
Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media.
Biomed Opt Express. 2011 Dec 1;2(12):3387-92. doi: 10.1364/BOE.2.003387. Epub 2011 Nov 29.
10
Surface properties of glass micropipettes and their effect on biological studies.
Nanoscale Res Lett. 2011 May 31;6(1):401. doi: 10.1186/1556-276X-6-401.

本文引用的文献

2
Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle.
J Physiol. 1984 Jul;352:685-701. doi: 10.1113/jphysiol.1984.sp015317.
4
Improving performance of motorized slides for micromanipulation.
J Neurosci Methods. 1989 Jun;28(3):225-7. doi: 10.1016/0165-0270(89)90040-x.
5
Mechanical transduction in biological systems.
Crit Rev Biomed Eng. 1988;16(2):141-69.
6
Elastic area compressibility modulus of red cell membrane.
Biophys J. 1976 Jun;16(6):585-95. doi: 10.1016/S0006-3495(76)85713-X.
7
Membrane viscoplastic flow.
Biophys J. 1976 Jan;16(1):13-26. doi: 10.1016/S0006-3495(76)85659-7.
8
Membrane viscoelasticity.
Biophys J. 1976 Jan;16(1):1-11. doi: 10.1016/S0006-3495(76)85658-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验