Suppr超能文献

膜片钳膜的结构与动力学:利用微分干涉相差光学显微镜的研究

The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy.

作者信息

Sokabe M, Sachs F

机构信息

Department of Biophysical Sciences, State University of New York, Buffalo 14214.

出版信息

J Cell Biol. 1990 Aug;111(2):599-606. doi: 10.1083/jcb.111.2.599.

Abstract

We have developed techniques for micromanipulation under high power video microscopy. We have used these to study the structure and motion of patch-clamped membranes when driven by pressure steps. Patch-clamped membranes do not consist of just a membrane, but rather a plug of membrane-covered cytoplasm. There are organelles and vesicles within the cytoplasm in the pipette tip of both cell-attached and excised patches. The cytoplasm is capable of active contraction normal to the plane of the membrane. With suction applied before seal formation, vesicles may be swept from the cell surface by shear stress generated from the flow of saline over the cell surface. In this case, patch recordings are made from membrane that was not originally present under the tip. The vesicles may break, or fuse and break, to form the gigasealed patch. Patch membranes adhere strongly to the wall of the pipette so that at zero transmural pressure the membranes tend to be normal to the wall. With transmural pressure gradients, the membranes generally become spherical; the radius of curvature decreasing with increasing pressure. Some patches have nonuniform curvature demonstrating that forces normal to the membrane may be significant. Membranes often do not respond quickly to changes in pipette pressure, probably because viscoelastic cytoplasm reduces the rate of flow through the tip of the pipette. Inside-out patches may be peeled from the walls of the pipette, and even everted (with positive pressure), without losing the seal. This suggests that the gigaseal is a distributed property of the membrane-glass interface.

摘要

我们已经开发出了在高倍视频显微镜下进行显微操作的技术。我们利用这些技术研究了在压力阶跃驱动下膜片钳制膜的结构和运动。膜片钳制膜不仅仅由一层膜组成,而是由一团被膜覆盖的细胞质组成。在细胞贴附式和切除式膜片的移液器尖端的细胞质中存在细胞器和囊泡。细胞质能够在垂直于膜平面的方向上进行主动收缩。在形成封接之前施加吸力时,囊泡可能会被细胞表面盐水流动产生的剪切力从细胞表面扫走。在这种情况下,膜片记录是从最初不在尖端下方的膜上进行的。囊泡可能会破裂,或者融合并破裂,以形成千兆封接膜片。膜片与移液器壁紧密粘附,因此在零跨膜压力下,膜片倾向于与壁垂直。随着跨膜压力梯度的变化,膜片通常会变成球形;曲率半径随着压力的增加而减小。一些膜片具有不均匀的曲率,这表明垂直于膜的力可能很显著。膜片通常不会对移液器压力的变化迅速做出反应,可能是因为粘弹性细胞质降低了通过移液器尖端的流速。内向外膜片可以从移液器壁上剥离,甚至可以外翻(在正压下),而不会失去封接。这表明千兆封接是膜 - 玻璃界面的一种分布式特性。

相似文献

9
A novel way to go whole-cell in patch-clamp experiments.在膜片钳实验中进行全细胞记录的一种新方法。
IEEE Trans Biomed Eng. 2010 Nov;57(11). doi: 10.1109/TBME.2010.2055055. Epub 2010 Jun 28.
10
Mechanotransducing ion channels in C6 glioma cells.C6胶质瘤细胞中的机械转导离子通道
Glia. 1996 Nov;18(3):161-76. doi: 10.1002/(SICI)1098-1136(199611)18:3<161::AID-GLIA1>3.0.CO;2-2.

引用本文的文献

2
3
7
Mechanically Activated Ion Channels.机械激活离子通道
Neuron. 2015 Sep 23;87(6):1162-1179. doi: 10.1016/j.neuron.2015.08.032.
10
Surface properties of glass micropipettes and their effect on biological studies.
Nanoscale Res Lett. 2011 May 31;6(1):401. doi: 10.1186/1556-276X-6-401.

本文引用的文献

6
Elastic area compressibility modulus of red cell membrane.红细胞膜的弹性面积压缩模量。
Biophys J. 1976 Jun;16(6):585-95. doi: 10.1016/S0006-3495(76)85713-X.
7
Membrane viscoplastic flow.膜粘塑性流动
Biophys J. 1976 Jan;16(1):13-26. doi: 10.1016/S0006-3495(76)85659-7.
8
Membrane viscoelasticity.膜粘弹性。
Biophys J. 1976 Jan;16(1):1-11. doi: 10.1016/S0006-3495(76)85658-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验