Suppr超能文献

辅酶 A 在 3-羟-3-甲基戊二酰辅酶 A 还原酶中氢化物转移过程中的新作用。

A novel role for coenzyme A during hydride transfer in 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

机构信息

Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States.

出版信息

Biochemistry. 2013 Aug 6;52(31):5195-205. doi: 10.1021/bi400335g. Epub 2013 Jul 24.

Abstract

In this study, we take advantage of the ability of HMG-CoA reductase (HMGR) from Pseudomonas mevalonii to remain active while in its crystallized form to study the changing interactions between the ligands and protein as the first reaction intermediate is created. HMG-CoA reductase catalyzes one of the few double oxidation-reduction reactions in intermediary metabolism that take place in a single active site. Our laboratory has undertaken an exploration of this reaction space using structures of HMG-CoA reductase complexed with various substrate, nucleotide, product, and inhibitor combinations. With a focus in this publication on the first hydride transfer, our structures follow this reduction reaction as the enzyme converts the HMG-CoA thioester from a flat sp(2)-like geometry to a pyramidal thiohemiacetal configuration consistent with a transition to an sp(3) orbital. This change in the geometry propagates through the coenzyme A (CoA) ligand whose first amide bond is rotated 180° where it anchors a web of hydrogen bonds that weave together the nucleotide, the reaction intermediate, the enzyme, and the catalytic residues. This creates a stable intermediate structure prepared for nucleotide exchange and the second reduction reaction within the HMG-CoA reductase active site. Identification of this reaction intermediate provides a template for the development of an inhibitor that would act as an antibiotic effective against the HMG-CoA reductase of methicillin-resistant Staphylococcus aureus.

摘要

在这项研究中,我们利用假单胞菌甲羟戊酸途径酶(HMGR)在结晶形式下保持活性的能力,研究在第一个反应中间体形成时配体与蛋白质之间的变化相互作用。HMG-CoA 还原酶催化中间代谢中少数几个发生在单一活性部位的双氧化还原反应之一。我们的实验室已经使用与各种底物、核苷酸、产物和抑制剂组合结合的 HMG-CoA 还原酶结构,对该反应空间进行了探索。在本出版物中,我们重点研究了第一次氢转移,我们的结构遵循该还原反应,因为酶将 HMG-CoA 硫酯从平面 sp(2)样几何形状转化为与向 sp(3)轨道过渡一致的三角硫代半缩醛构象。这种几何形状的变化通过辅酶 A(CoA)配体传播,其第一个酰胺键旋转 180°,在那里它固定了氢键网络,将核苷酸、反应中间体、酶和催化残基编织在一起。这就形成了一个准备好进行核苷酸交换和 HMG-CoA 还原酶活性部位内第二次还原反应的稳定中间结构。这种反应中间体的鉴定为开发抑制剂提供了模板,这种抑制剂将作为一种有效的抗生素,对抗耐甲氧西林金黄色葡萄球菌的 HMG-CoA 还原酶。

相似文献

1
A novel role for coenzyme A during hydride transfer in 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
Biochemistry. 2013 Aug 6;52(31):5195-205. doi: 10.1021/bi400335g. Epub 2013 Jul 24.
2
Computational Study of Base-Catalyzed Thiohemiacetal Decomposition in HMG-CoA Reductase.
J Phys Chem B. 2023 Jun 8;127(22):4931-4938. doi: 10.1021/acs.jpcb.2c08969. Epub 2023 May 23.
4
3-Hydroxy-3-methylglutaryldithio-coenzyme A: a potent inhibitor of Pseudomonas mevalonii HMG-CoA reductase.
Biochem Med Metab Biol. 1991 Apr;45(2):204-8. doi: 10.1016/0885-4505(91)90022-d.
5
Biosynthesis and characterization of (S)-and (R)-3-hydroxy-3-methylglutaryl coenzyme A.
Biochem Med Metab Biol. 1992 Oct;48(2):149-58. doi: 10.1016/0885-4505(92)90060-c.
6
3-hydroxy-3-methylglutaryl-CoA synthase intermediate complex observed in "real-time".
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16442-7. doi: 10.1073/pnas.0405809101. Epub 2004 Oct 21.
7
Structural Features and Domain Movements Controlling Substrate Binding and Cofactor Specificity in Class II HMG-CoA Reductase.
Biochemistry. 2018 Feb 6;57(5):654-662. doi: 10.1021/acs.biochem.7b00999. Epub 2017 Dec 21.
8
Crystal structure of Pseudomonas mevalonii HMG-CoA reductase at 3.0 angstrom resolution.
Science. 1995 Jun 23;268(5218):1758-62. doi: 10.1126/science.7792601.

引用本文的文献

1
Improving Cofactor Promiscuity of HMG-CoA Reductase from Through Rational Design.
Biomolecules. 2025 Jul 7;15(7):976. doi: 10.3390/biom15070976.
2
pH-dependent reaction triggering in PmHMGR crystals for time-resolved crystallography.
Biophys J. 2024 Mar 5;123(5):622-637. doi: 10.1016/j.bpj.2024.02.003. Epub 2024 Feb 6.
3
Computational Study of Base-Catalyzed Thiohemiacetal Decomposition in HMG-CoA Reductase.
J Phys Chem B. 2023 Jun 8;127(22):4931-4938. doi: 10.1021/acs.jpcb.2c08969. Epub 2023 May 23.
4
Targeting Enterococcus faecalis HMG-CoA reductase with a non-statin inhibitor.
Commun Biol. 2023 Apr 3;6(1):360. doi: 10.1038/s42003-023-04639-y.
6
An Atomic-Level Perspective of HMG-CoA-Reductase: The Target Enzyme to Treat Hypercholesterolemia.
Molecules. 2020 Aug 26;25(17):3891. doi: 10.3390/molecules25173891.
7
New Crystallographic Snapshots of Large Domain Movements in Bacterial 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase.
Biochemistry. 2018 Oct 2;57(39):5715-5725. doi: 10.1021/acs.biochem.8b00869. Epub 2018 Sep 19.
8
Structural Features and Domain Movements Controlling Substrate Binding and Cofactor Specificity in Class II HMG-CoA Reductase.
Biochemistry. 2018 Feb 6;57(5):654-662. doi: 10.1021/acs.biochem.7b00999. Epub 2017 Dec 21.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.
Biochemistry. 2012 Oct 9;51(40):7983-95. doi: 10.1021/bi3008593. Epub 2012 Sep 25.
3
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
4
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
5
Model building and refinement practice.
Methods Enzymol. 1997;277:208-30. doi: 10.1016/s0076-6879(97)77013-7.
7
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
8
Crystallization of HMG-CoA reductase from Pseudomonas mevalonii.
Acta Crystallogr D Biol Crystallogr. 1995 May 1;51(Pt 3):386-9. doi: 10.1107/S0907444994009819.
9
Pound-wise but penny-foolish: How well do micromolecules fare in macromolecular refinement?
Structure. 2003 Sep;11(9):1051-9. doi: 10.1016/s0969-2126(03)00186-2.
10
The Cambridge Structural Database: a quarter of a million crystal structures and rising.
Acta Crystallogr B. 2002 Jun;58(Pt 3 Pt 1):380-8. doi: 10.1107/s0108768102003890. Epub 2002 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验