Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
J Phys Condens Matter. 2013 Jul 24;25(29):295501. doi: 10.1088/0953-8984/25/29/295501. Epub 2013 Jun 26.
We describe how to apply the recently developed pole expansion and selected inversion (PEXSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating the charge density, the total energy, the Helmholtz free energy and the atomic forces (including both the Hellmann-Feynman force and the Pulay force) without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEXSI is that it has a computational complexity much lower than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEXSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEXSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEXSI are modest. This even makes it possible to perform Kohn-Sham DFT calculations for 10 000-atom nanotubes with a sequential implementation of the selected inversion algorithm. We also perform an accurate geometry optimization calculation on a truncated (8, 0) boron nitride nanotube system containing 1024 atoms. Numerical results indicate that the use of PEXSI does not lead to loss of the accuracy required in a practical DFT calculation.
我们描述了如何将最近开发的极点展开和选择反转(PEXSI)技术应用于基于原子轨道离散化的 Kohn-Sham 密度泛函理论(DFT)电子结构计算。我们给出了无需使用 Kohn-Sham 哈密顿量的本征值和本征向量来评估电荷密度、总能量、亥姆霍兹自由能和原子力(包括赫尔曼-费曼力和普莱伊力)的解析表达式。我们还展示了如何在不使用 Kohn-Sham 本征值的情况下更新化学势。使用 PEXSI 的优势在于它的计算复杂度远低于矩阵对角化过程。我们通过比较绝缘和金属纳米管上 PEXSI 的计时与对角化的计时来展示性能增益。对于这些准一维系统,PEXSI 的复杂度与原子数呈线性关系。当纳米管中的原子数大于几百个时,我们的计算实验中可以观察到这种线性缩放。PEXSI 的壁钟时间和内存需求都适中。这甚至使得使用选定反转算法的顺序实现来对包含 1024 个原子的截断(8,0)氮化硼纳米管系统进行准确的几何优化计算成为可能。我们还对包含 1024 个原子的截断(8,0)氮化硼纳米管系统进行了精确的几何优化计算。数值结果表明,使用 PEXSI 不会导致实际 DFT 计算所需精度的损失。