Hu Wei, Lin Lin, Yang Chao
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Phys Chem Chem Phys. 2015 Dec 21;17(47):31397-404. doi: 10.1039/c5cp00333d.
With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.
借助我们最近开发的大规模并行间断伽辽金密度泛函理论(DGDFT)方法,我们对包含数千到一万个原子的扶手椅型边缘磷烯纳米带(ACPNRs)进行了大规模的科恩-沙姆密度泛函理论计算。DGDFT的使用使我们能够系统地达到传统平面波基组类型的精度,但对于该系统,每个原子只需使用数量相对较少(约15个)的自适应局部基(ALB)函数。表示科恩-沙姆哈密顿量所需的自由度相对较少,再加上使用极点展开选择反演(PEXSI)技术避免了对哈密顿量进行对角化的需要,从而产生了一种高效且可扩展的计算方案,用于分析ACPNRs的电子结构及其动力学。对于包含1080 - 10800个原子的大规模ACPNRs,计算其电子结构时,每次自洽场(SCF)迭代的总挂钟时间仅为10 - 25秒,精度与传统平面波DFT计算完全相当。对于ACPNR系统,我们观察到DGDFT方法可以扩展到5000 - 50000个处理器。我们使用基于DGDFT的从头算分子动力学(AIMD)计算来研究ACPNRs的热力学稳定性。我们的计算表明,在室温下ACPNRs中会出现2×1边缘重构。