Suppr超能文献

活性与E-64抑制的猕猴桃蛋白酶的构象流动性

Conformational mobility of active and E-64-inhibited actinidin.

作者信息

Grozdanović Milica M, Drakulić Branko J, Gavrović-Jankulović Marija

机构信息

Department of Biochemistry, University of Belgrade, Belgrade, Serbia.

出版信息

Biochim Biophys Acta. 2013 Oct;1830(10):4790-9. doi: 10.1016/j.bbagen.2013.06.015. Epub 2013 Jun 23.

Abstract

BACKGROUND

Actinidin, a protease from kiwifruit, belongs to the C1 family of cysteine proteases. Cysteine proteases were found to be involved in many disease states and are valid therapeutic targets. Actinidin has a wide pH activity range and wide substrate specificity, which makes it a good model system for studying enzyme-substrate interactions.

METHODS

The influence of inhibitor (E-64) binding on the conformation of actinidin was examined by 2D PAGE, circular dichroism (CD) spectroscopy, hydrophobic ligand binding assay, and molecular dynamics simulations.

RESULTS

Significant differences were observed in electrophoretic mobility of proteolytically active and E-64-inhibited actinidin. CD spectrometry and hydrophobic ligand binding assay revealed a difference in conformation between active and inhibited actinidin. Molecular dynamics simulations showed that a loop defined by amino-acid residues 88-104 had greater conformational mobility in the inhibited enzyme than in the active one. During MD simulations, the covalently bound inhibitor was found to change its conformation from extended to folded, with the guanidino moiety approaching the carboxylate.

CONCLUSIONS

Conformational mobility of actinidin changes upon binding of the inhibitor, leading to a sequence of events that enables water and ions to protrude into a newly formed cavity of the inhibited enzyme. Drastic conformational mobility of E-64, a common inhibitor of cysteine proteases found in many crystal structures stored in PDB, was also observed.

GENERAL SIGNIFICANCE

The analysis of structural changes which occur upon binding of an inhibitor to a cysteine protease provides a valuable starting point for the future design of therapeutic agents.

摘要

背景

猕猴桃蛋白酶是一种来自猕猴桃的蛋白酶,属于半胱氨酸蛋白酶的C1家族。已发现半胱氨酸蛋白酶与多种疾病状态有关,是有效的治疗靶点。猕猴桃蛋白酶具有广泛的pH活性范围和广泛的底物特异性,这使其成为研究酶 - 底物相互作用的良好模型系统。

方法

通过二维聚丙烯酰胺凝胶电泳(2D PAGE)、圆二色光谱(CD)、疏水配体结合测定和分子动力学模拟,研究抑制剂(E - 64)结合对猕猴桃蛋白酶构象的影响。

结果

观察到具有蛋白水解活性的猕猴桃蛋白酶和被E - 64抑制的猕猴桃蛋白酶在电泳迁移率上有显著差异。CD光谱法和疏水配体结合测定揭示了活性和被抑制的猕猴桃蛋白酶在构象上的差异。分子动力学模拟表明,由氨基酸残基88 - 104定义的环在被抑制的酶中比在活性酶中具有更大的构象流动性。在分子动力学模拟过程中,发现共价结合的抑制剂其构象从伸展变为折叠,胍基部分靠近羧酸盐。

结论

猕猴桃蛋白酶在与抑制剂结合后构象流动性发生变化,导致一系列事件,使水和离子能够进入被抑制酶新形成的腔中。在许多存储于蛋白质数据库(PDB)中的晶体结构中发现的半胱氨酸蛋白酶常见抑制剂E - 64也观察到了剧烈的构象流动性。

一般意义

分析抑制剂与半胱氨酸蛋白酶结合时发生的结构变化为未来治疗药物的设计提供了有价值的起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验