Suppr超能文献

α-螺旋孔形成蛋白 Equinatoxin II 通过一系列有序的步骤导致膜损伤。

Membrane damage by an α-helical pore-forming protein, Equinatoxin II, proceeds through a succession of ordered steps.

机构信息

Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.

出版信息

J Biol Chem. 2013 Aug 16;288(33):23704-15. doi: 10.1074/jbc.M113.481572. Epub 2013 Jun 26.

Abstract

Actinoporin equinatoxin II (EqtII) is an archetypal example of α-helical pore-forming toxins that porate cellular membranes by the use of α-helices. Previous studies proposed several steps in the pore formation: binding of monomeric protein onto the membrane, followed by oligomerization and insertion of the N-terminal α-helix into the lipid bilayer. We studied these separate steps with an EqtII triple cysteine mutant. The mutant was engineered to monitor the insertion of the N terminus into the lipid bilayer by labeling Cys-18 with a fluorescence probe and at the same time to control the flexibility of the N-terminal region by the disulfide bond formed between cysteines introduced at positions 8 and 69. The insertion of the N terminus into the membrane proceeded shortly after the toxin binding and was followed by oligomerization. The oxidized, non-lytic, form of the mutant was still able to bind to membranes and oligomerize at the same level as the wild-type or the reduced form. However, the kinetics of the N-terminal helix insertion, the release of calcein from erythrocyte ghosts, and hemolysis of erythrocytes was much slower when membrane-bound oxidized mutant was reduced by the addition of the reductant. Results show that the N-terminal region needs to be inserted in the lipid membrane before the oligomerization into the final pore and imply that there is no need for a stable prepore formation. This is different from β-pore-forming toxins that often form β-barrel pores via a stable prepore complex.

摘要

肌动蛋白孔形成毒素 equinatoxin II(EqtII)是α-螺旋孔形成毒素的典型代表,它通过α-螺旋使细胞膜穿孔。先前的研究提出了孔形成的几个步骤:单体蛋白与膜结合,然后寡聚化,N 端α-螺旋插入脂质双层。我们使用 EqtII 三半胱氨酸突变体研究了这些单独的步骤。该突变体被设计用来通过用荧光探针标记 Cys-18 来监测 N 端插入脂质双层的情况,同时通过在位置 8 和 69 引入的半胱氨酸形成的二硫键来控制 N 端区域的柔韧性。N 端插入膜后不久就进行了,随后进行了寡聚化。氧化的、非溶血性的突变体形式仍然能够与膜结合,并以与野生型或还原型相同的水平进行寡聚化。然而,当结合在膜上的氧化突变体通过还原剂还原时,N 端螺旋插入、钙荧光素从红细胞胞质中释放以及红细胞溶血的动力学要慢得多。结果表明,N 端区域需要插入脂质膜中,然后才能寡聚成最终的孔,这表明不需要稳定的前孔形成。这与β-孔形成毒素不同,β-孔形成毒素通常通过稳定的前孔复合物形成β-桶孔。

相似文献

1
Membrane damage by an α-helical pore-forming protein, Equinatoxin II, proceeds through a succession of ordered steps.
J Biol Chem. 2013 Aug 16;288(33):23704-15. doi: 10.1074/jbc.M113.481572. Epub 2013 Jun 26.
3
Structure and activity of the N-terminal region of the eukaryotic cytolysin equinatoxin II.
Biochemistry. 2006 Feb 14;45(6):1818-28. doi: 10.1021/bi052166o.
4
Pore formation by equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable beta-sandwich.
J Biol Chem. 2004 Nov 5;279(45):46509-17. doi: 10.1074/jbc.M406193200. Epub 2004 Aug 20.
7
Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes: 19F NMR studies.
J Mol Biol. 2005 Mar 18;347(1):27-39. doi: 10.1016/j.jmb.2004.12.058. Epub 2005 Jan 18.

引用本文的文献

5
Determination of the boundary lipids of sticholysins using tryptophan quenching.
Sci Rep. 2022 Oct 15;12(1):17328. doi: 10.1038/s41598-022-21750-y.
6
Disruption of plant plasma membrane by Nep1-like proteins in pathogen-plant interactions.
New Phytol. 2023 Feb;237(3):746-750. doi: 10.1111/nph.18524. Epub 2022 Nov 29.
7
Actinoporin-like Proteins Are Widely Distributed in the Phylum Porifera.
Mar Drugs. 2022 Jan 15;20(1):74. doi: 10.3390/md20010074.
8
9
Challenges and approaches to studying pore-forming proteins.
Biochem Soc Trans. 2021 Dec 17;49(6):2749-2765. doi: 10.1042/BST20210706.
10
Force Mapping Study of Actinoporin Effect in Membranes Presenting Phase Domains.
Toxins (Basel). 2021 Sep 18;13(9):669. doi: 10.3390/toxins13090669.

本文引用的文献

1
The behavior of sea anemone actinoporins at the water-membrane interface.
Biochim Biophys Acta. 2011 Sep;1808(9):2275-88. doi: 10.1016/j.bbamem.2011.05.012. Epub 2011 May 20.
2
Intrinsic local disorder and a network of charge-charge interactions are key to actinoporin membrane disruption and cytotoxicity.
FEBS J. 2011 Jun;278(12):2080-9. doi: 10.1111/j.1742-4658.2011.08123.x. Epub 2011 May 16.
4
Specific interactions of sticholysin I with model membranes: an NMR study.
Proteins. 2010 Jun;78(8):1959-70. doi: 10.1002/prot.22712.
5
The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism.
Nature. 2009 Jun 4;459(7247):726-30. doi: 10.1038/nature08026.
6
Molecular mechanism of pore formation by actinoporins.
Toxicon. 2009 Dec 15;54(8):1125-34. doi: 10.1016/j.toxicon.2009.02.026. Epub 2009 Mar 5.
7
Disparate proteins use similar architectures to damage membranes.
Trends Biochem Sci. 2008 Oct;33(10):482-90. doi: 10.1016/j.tibs.2008.07.004. Epub 2008 Sep 6.
8
Calorimetric scrutiny of lipid binding by sticholysin II toxin mutants.
J Mol Biol. 2008 Oct 17;382(4):920-30. doi: 10.1016/j.jmb.2008.07.053. Epub 2008 Jul 26.
9
Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin.
J Biol Chem. 2008 Jul 4;283(27):18665-77. doi: 10.1074/jbc.M708747200. Epub 2008 Apr 28.
10
The pre-pore from Bacillus thuringiensis Cry1Ab toxin is necessary to induce insect death in Manduca sexta.
Peptides. 2008 Feb;29(2):318-23. doi: 10.1016/j.peptides.2007.09.026. Epub 2007 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验