Drechsler Alison, Potrich Cristina, Sabo Jennifer K, Frisanco Mattia, Guella Graziano, Dalla Serra Mauro, Anderluh Gregor, Separovic Frances, Norton Raymond S
The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
Biochemistry. 2006 Feb 14;45(6):1818-28. doi: 10.1021/bi052166o.
The actinoporins are a family of proteins from sea anemones that lyse cells by forming pores in cell membranes. Sphingomyelin plays an important role in their lytic activity, with membranes lacking this lipid being resistant to these toxins. Pore formation by the actinoporin equinatoxin II (EqTII) proceeds by membrane binding via a surface rich in aromatic residues, followed by translocation of the N-terminal region to the membrane and, finally, across the bilayer to form a functional pore. A key feature of this mechanism is the ability of the N-terminal region to form a stable, bilayer-spanning helix in the membrane, which in turn requires dissociation of the N-terminus from the bulk of the protein and significant extension of the N-terminal helix of native EqTII. In this study the structures of three peptides corresponding to residues 11-29, 11-32, and 1-32, respectively, of EqTII have been investigated by high-resolution nuclear magnetic resonance and Fourier transform infrared spectroscopy. The 32-residue peptide lacks ordered secondary structure in water, but residues 6-28 form a helix in dodecylphosphocholine micelles. Although this helix is long enough to span a bilayer membrane, this peptide and the shorter analogues display limited permeabilizing activity in large unilamellar vesicles and very weak hemolytic activity in human red blood cells. Thus, while the N-terminal region has the structural features required for this unusual mechanism of pore formation, the lack of activity of the isolated N-terminus shows that the bulk of the protein is essential for efficient pore formation by facilitating initial membrane binding, interacting with sphingomyelin, or stabilizing the oligomeric pore.
刺胞毒素是一类来自海葵的蛋白质家族,它们通过在细胞膜上形成孔道来裂解细胞。鞘磷脂在它们的裂解活性中起重要作用,缺乏这种脂质的膜对这些毒素具有抗性。刺胞毒素海葵毒素II(EqTII)形成孔道的过程是通过富含芳香族残基的表面与膜结合,随后N端区域转移至膜上,最后穿过双层膜形成功能性孔道。该机制的一个关键特征是N端区域能够在膜中形成稳定的跨双层螺旋,这反过来又需要N端从蛋白质主体解离,并使天然EqTII的N端螺旋显著延伸。在本研究中,分别对应于EqTII的11 - 29、11 - 32和1 - 32位残基的三种肽的结构已通过高分辨率核磁共振和傅里叶变换红外光谱进行了研究。32个残基的肽在水中缺乏有序的二级结构,但6 - 28位残基在十二烷基磷酸胆碱胶束中形成螺旋。尽管这个螺旋足够长以跨越双层膜,但该肽和较短的类似物在大单层囊泡中显示出有限的通透活性,在人红细胞中显示出非常弱的溶血活性。因此,虽然N端区域具有这种不寻常的孔道形成机制所需的结构特征,但分离的N端缺乏活性表明蛋白质主体对于通过促进初始膜结合、与鞘磷脂相互作用或稳定寡聚孔道来有效形成孔道至关重要。