Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria.
Nat Commun. 2013;4:2077. doi: 10.1038/ncomms3077.
Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.
粒子-波双重性使得可以构建用于物质波的干涉仪,这些干涉仪在精密测量设备中补充了光学干涉仪。这需要开发类似于光束分光器、相移器和组合器的原子光学元件。将这些元件集成到单个设备中是一个长期以来的目标。在这里,我们使用囚禁在原子芯片上的玻色-爱因斯坦凝聚体展示了完整的马赫-曾德尔序列。在我们的玻色-爱因斯坦凝聚体物质波中,粒子相互作用导致非线性,而在光子光学中不存在这种非线性。我们利用它来生成一种非经典状态,即在干涉仪内部减少了数的涨落。利用空间分离的波包,通过非绝热物质波组合器施加和读取受控的相移。我们展示了相干时间比相干态预期的长三倍,突出了纠缠作为计量学资源的潜力。我们的结果为集成的量子增强物质波传感器铺平了道路。