Suppr超能文献

采用混合图像滤波和迭代 Radon 变换算法提高血流速度测量精度。

Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm.

机构信息

Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA.

出版信息

Front Neurosci. 2013 Jun 18;7:106. doi: 10.3389/fnins.2013.00106. eCollection 2013.

Abstract

Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature.

摘要

神经活动导致血液动力学变化,这些变化可以通过功能磁共振成像 (fMRI) 来检测。确定个体血管中的血流变化是理解这些血液动力学信号的重要方面。可以通过测量血管直径和血流速度来计算血流。当使用线扫描成像时,血管中血液的流动会导致时空图像中的条纹,其中条纹角是血流速度的函数。已经提出了多种从这种时空图像序列中确定血流速度的方法。其中,Radon 变换相对容易实现,并且具有快速的数据处理。然而,速度测量的精度取决于执行的 Radon 变换的数量,这在处理速度和测量精度之间产生了权衡。此外,图像对比度、成像深度、图像采集速度和运动伪影等因素,尤其是在大型哺乳动物中,可能会导致数据采集导致错误的速度测量。在这里,我们表明,使用 Sobel 滤波器对数据进行预处理和迭代应用 Radon 变换可以解决这些问题,并提供更准确的血流速度测量。Sobel 滤波对图像信号质量的改善提高了准确性,迭代 Radon 变换提供了更高的精度和速度,速度测量的实现速度提高了一个数量级。该算法不使用角度信息的先验知识,因此对血流的突然变化敏感。它可以应用于任何具有红细胞 (RBC) 条纹的时空图像集,这些图像通常通过线扫描成像获得,或者从血管的全帧、时变图像重建获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/3684769/7c5ab2808341/fnins-07-00106-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验