Krolak Trevor, Kaplan Luke, Navas Kathleen, Chen Lujing, Birmingham Austin, Ryvkin Daniel, Izsa Victoria, Powell Megan, Wu Zhuhao, Deverman Benjamin E, Gu Chenghua
Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Cell. 2025 Jul 11. doi: 10.1016/j.cell.2025.06.030.
To meet the brain's moment-to-moment energy demand, neural activation rapidly increases local blood flow. This process, known as neurovascular coupling, involves rapid, coordinated vasodilation of the brain's arterial network. Here, we demonstrate that endothelial gap junction coupling enables long-range propagation of vasodilation signals through the vasculature during neurovascular coupling. The molecular composition of these gap junctions is zonated along the arterio-venous axis, with arteries being the most strongly coupled segment. Using optogenetics and visual stimuli in awake mice, we found that acute, arterial endothelial cell type-specific deletion of Cx37 and Cx40 abolishes arterial gap junction coupling and results in impaired vasodilation. Specifically, we demonstrated that arterial endothelial gap junction coupling determines both the speed and the spatial extent of vasodilation propagation elicited by neural activity. These findings indicate that endothelial gap junctions serve as a signaling highway for neurovascular coupling, enabling flexible and efficient distribution of limited energetic resources.
为满足大脑瞬间的能量需求,神经激活会迅速增加局部血流量。这一过程被称为神经血管耦合,涉及大脑动脉网络的快速、协调血管舒张。在此,我们证明内皮细胞间隙连接耦合能够在神经血管耦合过程中使血管舒张信号通过脉管系统进行远距离传播。这些间隙连接的分子组成沿动静脉轴呈带状分布,动脉是耦合最强的节段。利用清醒小鼠的光遗传学和视觉刺激,我们发现急性、动脉内皮细胞类型特异性缺失Cx37和Cx40会消除动脉间隙连接耦合,并导致血管舒张受损。具体而言,我们证明动脉内皮细胞间隙连接耦合决定了神经活动引发的血管舒张传播的速度和空间范围。这些发现表明内皮细胞间隙连接作为神经血管耦合的信号高速公路,能够灵活高效地分配有限的能量资源。