Department of Genetics in Ecology, University of Vienna, A-1090 Wien, Austria; email:
Annu Rev Microbiol. 2013;67:437-57. doi: 10.1146/annurev-micro-092412-155614. Epub 2013 Jun 26.
Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth's global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by Thaumarchaeota. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.
古菌构成了地球上微生物生物量的相当一部分。与细菌一样,它们通过使用有机和/或无机电子供体和受体进化出了多种能量代谢途径,其中许多能够从无机来源固定碳。因此,古菌在地球的全球地球化学循环中发挥着至关重要的作用,并影响温室气体的排放。产甲烷作用和厌氧甲烷氧化是碳循环中的重要步骤;这两个过程都仅由厌氧古菌完成。氨氧化为亚硝酸盐是由泉古菌完成的。它们是唯一一组大量存在于地球有氧陆地和海洋环境中的古菌。硫依赖古菌主要局限于高温环境,但嗜酸微生物的金属浸出和厌氧非嗜热甲烷氧化还原对环境的潜在影响。大量古菌的代谢途径,特别是那些在地下占主导地位的代谢途径,仍有待探索。
Annu Rev Microbiol. 2013-6-26
Appl Environ Microbiol. 2019-3-22
Annu Rev Microbiol. 2009
Appl Environ Microbiol. 2001-4
Sci Total Environ. 2024-10-10
Environ Sci Ecotechnol. 2025-8-5
Philos Trans R Soc Lond B Biol Sci. 2025-8-7
Microorganisms. 2025-4-25
Sci Data. 2025-2-16
Microorganisms. 2025-1-13