Knittel Katrin, Boetius Antje
Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
Annu Rev Microbiol. 2009;63:311-34. doi: 10.1146/annurev.micro.61.080706.093130.
Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction: CH(4) + SO(42-) ---> HCO(3-) + HS(-) + H(2)O. This review summarizes what is known and unknown about AOM on earth and its key catalysts, the ANME clades and their bacterial partners.
甲烷是大气中含量最丰富的碳氢化合物,也是一种重要的温室气体,迄今为止,它对工业化后全球变暖的贡献率估计达20%。大量生物地球化学研究聚焦于地球历史上甲烷全球通量变化的成因及影响,但其中潜在的微生物过程及其关键作用因子仍知之甚少。这是一个令人不安的知识空白,因为全球每年85%的甲烷产量和约60%的甲烷消耗量都基于微生物过程。地球上仅有三个多样性有限的关键微生物功能群调节着甲烷通量,即好氧甲烷氧化细菌、产甲烷古菌及其近亲——厌氧甲烷氧化古菌(ANME)。ANME代表广古菌门内特殊的演化分支,似乎仅从甲烷厌氧氧化(AOM)中获取能量,根据净反应式:CH₄ + SO₄²⁻ → HCO₃⁻ + HS⁻ + H₂O,以硫酸根作为最终电子受体。本综述总结了地球上关于AOM及其关键催化剂、ANME进化枝及其细菌伙伴已知和未知的情况。
Annu Rev Microbiol. 2009
Appl Environ Microbiol. 2019-3-22
Microbiologyopen. 2015-2
Biotechnol Bioeng. 2009-10-15
PLoS Biol. 2025-8-14
Microbiol Spectr. 2025-9-2
Appl Environ Microbiol. 2025-8-20
FEMS Microbiol Ecol. 2025-7-14