Suppr超能文献

评价归一化方法,为基于 LC-MS 的大规模代谢组学 profiling 实验铺平道路。

Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments.

机构信息

I-BioStat, Hasselt University, Diepenbeek, Belgium.

出版信息

OMICS. 2013 Sep;17(9):473-85. doi: 10.1089/omi.2013.0010. Epub 2013 Jun 29.

Abstract

Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments.

摘要

由于 LC-MS 测量之间存在系统性差异,因此将长时间内收集的基于液相色谱-质谱(LC-MS)的代谢组学实验结合起来仍然存在问题。到目前为止,大多数 LC-MS 数据的归一化方法都是基于模型的,基于内标或中间质量控制运行,其中外部模型外推到感兴趣的数据集。在本文的第一部分,我们评估了几种不需要使用内标就可以在 LC-MS 代谢组学实验中使用的现有数据驱动归一化方法。根据可变性度量,每种归一化方法的性能都相对较好,表明使用任何归一化方法都将大大改善源自多个实验运行的数据分析。在第二部分,我们将循环 Loess 归一化应用于利什曼原虫样本。这种归一化方法允许去除随时间推移的两个测量块之间的系统可变性,并保持差异代谢物。总之,归一化允许在不同的测量块之间汇集数据集,并且增加了分析的统计能力,从而为增加 LC-MS 代谢组学实验的规模铺平了道路。从我们的研究中,我们建议,如果只使用了少数几个内标,则选择数据驱动的归一化方法而不是模型驱动的归一化方法。此外,数据驱动的归一化方法是归一化无靶标 LC-MS 实验数据集的最佳选择。

相似文献

4
Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome.
Anal Chem. 2015 Jan 20;87(2):829-36. doi: 10.1021/ac503619q. Epub 2014 Dec 25.
5
Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS.
IEEE/ACM Trans Comput Biol Bioinform. 2015 Jul-Aug;12(4):914-27. doi: 10.1109/TCBB.2014.2377723.
6
Tailored liquid chromatography-mass spectrometry analysis improves the coverage of the intracellular metabolome of HepaRG cells.
J Chromatogr A. 2017 Mar 3;1487:168-178. doi: 10.1016/j.chroma.2017.01.050. Epub 2017 Jan 23.
8
Mass Spectrometry-Based Untargeted Plant Metabolomics.
Curr Protoc Plant Biol. 2019 Dec;4(4):e20100. doi: 10.1002/cppb.20100.
9
The great importance of normalization of LC-MS data for highly-accurate non-targeted metabolomics.
Biomed Chromatogr. 2017 Jan;31(1). doi: 10.1002/bmc.3864. Epub 2016 Nov 16.
10
Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics.
Anal Chim Acta. 2016 Oct 26;942:1-11. doi: 10.1016/j.aca.2016.06.004. Epub 2016 Jun 7.

引用本文的文献

2
Resolving multi-image spatial lipidomic responses to inhaled toxicants by machine learning.
Nat Commun. 2025 Mar 26;16(1):2954. doi: 10.1038/s41467-025-58135-4.
4
Closing the Knowledge Gap of Post-Acquisition Sample Normalization in Untargeted Metabolomics.
ACS Meas Sci Au. 2024 Oct 14;4(6):702-711. doi: 10.1021/acsmeasuresciau.4c00047. eCollection 2024 Dec 18.
5
LC-HRMS Lipidomic Fingerprints in Serbian Cohort of Schizophrenia Patients.
Int J Mol Sci. 2024 Sep 24;25(19):10266. doi: 10.3390/ijms251910266.
6
Concept of Normativity in Multi-Omics Analysis of Axon Regeneration.
Biomolecules. 2024 Jun 21;14(7):735. doi: 10.3390/biom14070735.
7
MetaboReport: from metabolomics data analysis to comprehensive reporting.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae373.
10
Associational Effects of Desmodium Intercropping on Maize Resistance and Secondary Metabolism.
J Chem Ecol. 2024 Jun;50(5-6):299-318. doi: 10.1007/s10886-024-01470-5. Epub 2024 Feb 2.

本文引用的文献

1
LC-MS metabolomics from study design to data-analysis - using a versatile pathogen as a test case.
Comput Struct Biotechnol J. 2013 Feb 6;4:e201301002. doi: 10.5936/csbj.201301002. eCollection 2013.
2
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis.
Brief Bioinform. 2013 Nov;14(6):671-83. doi: 10.1093/bib/bbs046. Epub 2012 Sep 17.
3
State-of-the art data normalization methods improve NMR-based metabolomic analysis.
Metabolomics. 2012 Jun;8(Suppl 1):146-160. doi: 10.1007/s11306-011-0350-z. Epub 2011 Aug 12.
4
Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets.
Metabolomics. 2012 Jun;8(Suppl 1):29-36. doi: 10.1007/s11306-011-0341-0. Epub 2011 Jul 31.
6
PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis.
Anal Chem. 2011 Apr 1;83(7):2786-93. doi: 10.1021/ac2000994. Epub 2011 Mar 14.
7
Metabolomics to unveil and understand phenotypic diversity between pathogen populations.
PLoS Negl Trop Dis. 2010 Nov 30;4(11):e904. doi: 10.1371/journal.pntd.0000904.
8
Simple data-reduction method for high-resolution LC-MS data in metabolomics.
Bioanalysis. 2009 Dec;1(9):1551-7. doi: 10.4155/bio.09.146.
9
10
Comparison of normalization methods for Illumina BeadChip HumanHT-12 v3.
BMC Genomics. 2010 Jun 2;11:349. doi: 10.1186/1471-2164-11-349.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验