I-BioStat, Hasselt University, Diepenbeek, Belgium.
OMICS. 2013 Sep;17(9):473-85. doi: 10.1089/omi.2013.0010. Epub 2013 Jun 29.
Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments.
由于 LC-MS 测量之间存在系统性差异,因此将长时间内收集的基于液相色谱-质谱(LC-MS)的代谢组学实验结合起来仍然存在问题。到目前为止,大多数 LC-MS 数据的归一化方法都是基于模型的,基于内标或中间质量控制运行,其中外部模型外推到感兴趣的数据集。在本文的第一部分,我们评估了几种不需要使用内标就可以在 LC-MS 代谢组学实验中使用的现有数据驱动归一化方法。根据可变性度量,每种归一化方法的性能都相对较好,表明使用任何归一化方法都将大大改善源自多个实验运行的数据分析。在第二部分,我们将循环 Loess 归一化应用于利什曼原虫样本。这种归一化方法允许去除随时间推移的两个测量块之间的系统可变性,并保持差异代谢物。总之,归一化允许在不同的测量块之间汇集数据集,并且增加了分析的统计能力,从而为增加 LC-MS 代谢组学实验的规模铺平了道路。从我们的研究中,我们建议,如果只使用了少数几个内标,则选择数据驱动的归一化方法而不是模型驱动的归一化方法。此外,数据驱动的归一化方法是归一化无靶标 LC-MS 实验数据集的最佳选择。