Suppr超能文献

Illumina BeadChip HumanHT-12 v3 芯片标准化方法的比较

Comparison of normalization methods for Illumina BeadChip HumanHT-12 v3.

机构信息

Boehringer Ingelheim Pharma GmbH & Co, KG, Birkendorfer Str, 65, 88397 Biberach/Riss, Germany.

出版信息

BMC Genomics. 2010 Jun 2;11:349. doi: 10.1186/1471-2164-11-349.

Abstract

BACKGROUND

Normalization of microarrays is a standard practice to account for and minimize effects which are not due to the controlled factors in an experiment. There is an overwhelming number of different methods that can be applied, none of which is ideally suited for all experimental designs. Thus, it is important to identify a normalization method appropriate for the experimental setup under consideration that is neither too negligent nor too stringent. Major aim is to derive optimal results from the underlying experiment. Comparisons of different normalization methods have already been conducted, none of which, to our knowledge, comparing more than a handful of methods.

RESULTS

In the present study, 25 different ways of pre-processing Illumina Sentrix BeadChip array data are compared. Among others, methods provided by the BeadStudio software are taken into account. Looking at different statistical measures, we point out the ideal versus the actual observations. Additionally, we compare qRT-PCR measurements of transcripts from different ranges of expression intensities to the respective normalized values of the microarray data. Taking together all different kinds of measures, the ideal method for our dataset is identified.

CONCLUSIONS

Pre-processing of microarray gene expression experiments has been shown to influence further downstream analysis to a great extent and thus has to be carefully chosen based on the design of the experiment. This study provides a recommendation for deciding which normalization method is best suited for a particular experimental setup.

摘要

背景

微阵列的标准化是一种标准做法,用于说明和最小化不是由于实验中控制因素引起的效应。有大量不同的方法可以应用,没有一种方法是完全适合所有实验设计的。因此,识别适用于所考虑的实验设置的归一化方法非常重要,该方法既不过分疏忽也不过分严格。主要目的是从基础实验中得出最佳结果。已经对不同的归一化方法进行了比较,据我们所知,没有一种方法比较了超过几种方法。

结果

在本研究中,比较了 25 种不同的预处理 Illumina Sentrix BeadChip 阵列数据的方法。其中包括 BeadStudio 软件提供的方法。通过观察不同的统计措施,我们指出了理想与实际观察之间的差异。此外,我们将不同表达强度范围的转录本的 qRT-PCR 测量值与微阵列数据的相应归一化值进行比较。综合所有不同的测量方法,确定了我们数据集的理想方法。

结论

微阵列基因表达实验的预处理极大地影响了下游分析,因此必须根据实验设计仔细选择。本研究为决定哪种归一化方法最适合特定的实验设置提供了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fe/3091625/8d77d5e35e97/1471-2164-11-349-1.jpg

相似文献

1
Comparison of normalization methods for Illumina BeadChip HumanHT-12 v3.
BMC Genomics. 2010 Jun 2;11:349. doi: 10.1186/1471-2164-11-349.
2
Illumina WG-6 BeadChip strips should be normalized separately.
BMC Bioinformatics. 2009 Nov 11;10:372. doi: 10.1186/1471-2105-10-372.
3
Pre-processing Agilent microarray data.
BMC Bioinformatics. 2007 May 1;8:142. doi: 10.1186/1471-2105-8-142.
4
Evaluation of methods for oligonucleotide array data via quantitative real-time PCR.
BMC Bioinformatics. 2006 Jan 17;7:23. doi: 10.1186/1471-2105-7-23.
5
Endogenous control genes in complex vascular tissue samples.
BMC Genomics. 2009 Nov 10;10:516. doi: 10.1186/1471-2164-10-516.
6
Clustering microarray data to determine normalization method.
Adv Exp Med Biol. 2011;696:145-53. doi: 10.1007/978-1-4419-7046-6_15.
7
Optimized LOWESS normalization parameter selection for DNA microarray data.
BMC Bioinformatics. 2004 Dec 9;5:194. doi: 10.1186/1471-2105-5-194.
8
Importance of randomization in microarray experimental designs with Illumina platforms.
Nucleic Acids Res. 2009 Sep;37(17):5610-8. doi: 10.1093/nar/gkp573. Epub 2009 Jul 17.
10
Systematic comparison of RNA-Seq normalization methods using measurement error models.
Bioinformatics. 2012 Oct 15;28(20):2584-91. doi: 10.1093/bioinformatics/bts497. Epub 2012 Aug 22.

引用本文的文献

1
Identification and correction of time-series transcriptomic anomalies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf524.
3
Novel RNA biomarkers improve discrimination of children with tuberculosis disease from those with non-TB pneumonia after stimulation.
Front Immunol. 2024 Sep 26;15:1401647. doi: 10.3389/fimmu.2024.1401647. eCollection 2024.
5
Transcriptional markers classifying Escherichia coli and Staphylococcus aureus induced sepsis in adults: A data-driven approach.
PLoS One. 2024 Jul 5;19(7):e0305920. doi: 10.1371/journal.pone.0305920. eCollection 2024.
7
EPIphany-A Platform for Analysis and Visualization of Peptide Immunoarray Data.
Front Bioinform. 2021 Jul 7;1:694324. doi: 10.3389/fbinf.2021.694324. eCollection 2021.
8
DNA methylation patterns reflect individual's lifestyle independent of obesity.
Clin Transl Med. 2022 Jun;12(6):e851. doi: 10.1002/ctm2.851.
9
Genetically regulated gene expression and proteins revealed discordant effects.
PLoS One. 2022 May 23;17(5):e0268815. doi: 10.1371/journal.pone.0268815. eCollection 2022.
10
Impact of medication on blood transcriptome reveals off-target regulations of beta-blockers.
PLoS One. 2022 Apr 21;17(4):e0266897. doi: 10.1371/journal.pone.0266897. eCollection 2022.

本文引用的文献

2
Statistical methods of background correction for Illumina BeadArray data.
Bioinformatics. 2009 Mar 15;25(6):751-7. doi: 10.1093/bioinformatics/btp040. Epub 2009 Feb 4.
3
ArrayExpress update--from an archive of functional genomics experiments to the atlas of gene expression.
Nucleic Acids Res. 2009 Jan;37(Database issue):D868-72. doi: 10.1093/nar/gkn889. Epub 2008 Nov 10.
4
Spike-in validation of an Illumina-specific variance-stabilizing transformation.
BMC Res Notes. 2008 Jun 4;1:18. doi: 10.1186/1756-0500-1-18.
5
Consolidated strategy for the analysis of microarray spike-in data.
Nucleic Acids Res. 2008 Oct;36(17):e108. doi: 10.1093/nar/gkn430. Epub 2008 Aug 1.
6
Methods for evaluating gene expression from Affymetrix microarray datasets.
BMC Bioinformatics. 2008 Jun 17;9:284. doi: 10.1186/1471-2105-9-284.
7
lumi: a pipeline for processing Illumina microarray.
Bioinformatics. 2008 Jul 1;24(13):1547-8. doi: 10.1093/bioinformatics/btn224. Epub 2008 May 8.
9
Statistical issues in the analysis of Illumina data.
BMC Bioinformatics. 2008 Feb 6;9:85. doi: 10.1186/1471-2105-9-85.
10
Model-based variance-stabilizing transformation for Illumina microarray data.
Nucleic Acids Res. 2008 Feb;36(2):e11. doi: 10.1093/nar/gkm1075. Epub 2008 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验