Suppr超能文献

原发性骨髓间充质基质细胞挽救 Twitche 小鼠的轴突表型。

Primary bone marrow mesenchymal stromal cells rescue the axonal phenotype of Twitcher mice.

机构信息

Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.

出版信息

Cell Transplant. 2014 Feb;23(2):239-52. doi: 10.3727/096368913X669752. Epub 2013 Jun 27.

Abstract

Krabbe's disease (KD) is a demyelinating disorder caused by the deficiency of lysosomal galactocerebrosidase (GALC), affecting both the central (CNS) and the peripheral nervous system (PNS). A current therapy, hematopoietic stem cell transplantation (HSCT), is ineffective at correcting the PNS pathology. We have previously shown that systemic delivery of immortalized bone marrow-derived murine mesenchymal stromal cells (BM-MSCs) diminishes the neuropathology of transplanted Twitcher mice, a murine model of KD. In this study, to move one step closer to clinical application, the effectiveness of a systematic delivery of primary BM-MSCs to promote recovery of the Twitcher PNS was assessed. Primary BM-MSCs grafted to the Twitcher sciatic nerve led to increased GALC activity that was not correlated to decreased psychosine (the toxic GALC substrate) accumulation. Nevertheless, BM-MSC transplantation rescued the axonal phenotype of Twitcher mice in the sciatic nerve, with an increased density of both myelinated and unmyelinated axons in transplanted animals. Whereas no increase in myelination was observed, upon transplantation an increased proliferation of Schwann cell precursors occurred. Supporting these findings, in vitro, BM-MSCs promoted neurite outgrowth of Twitcher sensory neurons and proliferation of Twitcher Schwann cells. Moreover, BM-MSCs expressed nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and promoted increased BDNF synthesis by neighboring Schwann cells. Besides their action in neurons and glia, BM-MSCs led to macrophage activation in Twitcher sciatic nerves. In summary, primary BM-MSCs diminish the neuropathology of Twitcher sciatic nerves by coordinately affecting neurons, glia, and macrophages.

摘要

克拉伯病(KD)是一种溶酶体半乳糖脑苷脂酶(GALC)缺乏引起的脱髓鞘疾病,影响中枢神经系统(CNS)和周围神经系统(PNS)。目前的治疗方法造血干细胞移植(HSCT)不能纠正 PNS 病理学。我们之前已经表明,系统递送永生化骨髓源性间充质基质细胞(BM-MSCs)可减轻移植抽搐小鼠(KD 的一种小鼠模型)的神经病理学。在这项研究中,为了更接近临床应用,评估了系统递送原代 BM-MSCs 以促进抽搐者 PNS 恢复的有效性。移植到抽搐者坐骨神经中的原代 BM-MSCs 导致 GALC 活性增加,而与神经鞘氨醇(GALC 的毒性底物)积累减少无关。尽管如此,BM-MSC 移植挽救了抽搐者坐骨神经中的轴突表型,移植动物中有髓和无髓轴突的密度增加。尽管没有观察到髓鞘形成增加,但移植后 Schwann 细胞前体的增殖增加。支持这些发现,在体外,BM-MSCs 促进了抽搐者感觉神经元的轴突生长和抽搐者 Schwann 细胞的增殖。此外,BM-MSCs 表达神经生长因子(NGF)和脑源性神经营养因子(BDNF),并促进邻近 Schwann 细胞增加 BDNF 的合成。除了它们在神经元和神经胶质中的作用外,BM-MSCs 还导致抽搐者坐骨神经中的巨噬细胞活化。总之,原代 BM-MSCs 通过协调影响神经元、神经胶质和巨噬细胞来减轻抽搐者坐骨神经的神经病理学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验